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Preface

The work encompassed by this report was performed under the cognizance of
the Guidance and Control Division of the Jet Propulsion Laboratory and was
accomplished through the support of the Guidance and Controls Branch of the
Office of Advanced Research and Technology, NASA. Computer programs devel-
oped as a result of this support have already been successfully applied to attitude
dynamics studies of the Mariner VI and VII spacecraft to Mars and to design
analysis for a Mariner Mars 1971 orbiter and a Mariner Venus—-Mercury 1973
spacecraft.
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Abstract

The results of attempts to put into practice the apparent advantages of the
“barycenter formulation” of rigid-body rotational dynamics is described. The end
product is a FORTRAN subroutine capable of computing the angular accelera-
tions of each body in a system composed of several point-connected rigid bodies.

A 3-body system is used to illustrate the concept of the connection barycenter.
Extension of the barycenter formulation of the dynamical equations to the general
case of n bodies is then derived. Some discussion is devoted to the computational
problem of handling interbody torques of constraint. An efficient procedure for
accommodating the presence of symmetric rotors in the system is also developed.

Two space vehicle attitude dynamics and control simulations of some interest
are used to illustrate the application of the computer subroutine MLTBDY: one
example is a spacecraft, under three-axis control, subject to the perturbations of a
mechanically scanning platform, while the other is a rigid space vehicle hinged
to four large solar-cell panels and under the influence of a trajectory-correcting
rocket engine.

JPL TECHNICAL REPORT 32-1516

vii



Multi-Rigid-Body Attitude Dynamics Simulation

I. Introduction

Continuing developments in the field of spacecraft atti-
tude control have led, in many cases, to the desire on the
part of the designer and the analyst for more detailed
and comprehensive mathematical models of dynamic per-
formance. For example, the recent emergence of dual-
and multi-spin spacecraft configurations seems to have
been the catalyst for many efforts to devise dynamic
models and computer simulations capable of describing
complex vehicle attitude motion. Although system sta-
bility and performance can be estimated under certain
idealizations of energy-loss mechanisms, simplified geom-
etry, and linearization of vehicle dynamics, ultimately it
becomes necessary to deal with a reasonably detailed
model, including the complete nonlinear vehicle dynamic
model and closed-loop control system. Of course, the digi-
tal (or analog-hybrid) computer then becomes the indis-
pensable analytical tool for evaluating the complicated
interactions of the vehicle and the control system, study-
ing the effects of various parameters, and generally veri-
fying system performance as predicted by the more
simplified analyses.

The mathematical complexity resulting from the model-
ing process is simply a consequence of the fact that the

JPL TECHNICAL REPORT 32-1516

system consists of several interconnected rigid, semirigid,
and/or quite flexible bodies, and further that the motions
cannot necessarily be assumed to be arbitrarily small.
Thus, the detailed dynamical model, in general, becomes
a large system of nonlinear ordinary differential equations
with time-varying coefficients. In this report, a particular
method (Ref. 1) of formulating the dynamical equations
of motion of a system of interconnected rigid bodies is
adopted and used for the computer simulation of space-
vehicle attitude and pointing control systems. This
method, which might be referred to as the “barycenter
formulation,” is illustrated in Section II with respect to a
system of three rigid bodies. Subsequently, the general-
ization to a system of n rigid bodies is developed, the
simplicity of which is due to the recognition of a charac-
teristic point in each body known as the “connection
barycenter.”

Sections follow that deal with certain manipulations
of the vehicle equations of motion in an effort to improve
computational efficiency. It is desirable, for example, to
eliminate from the equations certain unknown torques
resulting from rigid constraints imposed at the connecting
joints. Further, since such constraints decrease the num-
ber of system degrees of freedom, it is more efficient



computationally to deal directly with the “free” variables
and to obtain constrained variable values from algebraic
relations among the free variables.

In addition, it is demonstrated that the presence of
rigid symmetric rotors (e.g., momentum wheels) can be
easily accommodated in the barycenter formulation.

The report concludes with a description of digital com-
puter subroutines (written in FORTRAN 1IV) developed
for the purpose of evaluating the vehicle’s angular accel-
erations based on the barycenter formulation. Through
the use of the subroutines as part of a larger digital simu-
lation involving numerical integration of the kinematical
equations as well as the control equations, two repre-
sentative problems in spacecraft attitude control are pre-
sented. One of these is a 3-axis-stabilized craft (using
celestial sensors and jets) that carries an actively driven
platform and is required to maintain certain inertial atti-
tude accuracies and/or instrument-pointing accuracies.
The other configuration simulated is that of a spacecraft
and multi-panel solar array as it responds to the thrust
of a trajectory-correction engine.

Il. A 3-Body System

The barycenter formulation as derived by Hooker and
Margulies (see Ref. 1) and also described by Roberson
and Wittenberg (Ref. 2) offers a highly systematic ap-
proach for mathematically describing the rotations of a
vehicle that may be represented as a collection of inter-
connected rigid bodies. Restrictions placed on the rigid-
body system are the following: (1) closed connection
loops are prohibited and (2) the connecting joints allow
only relative rotation between pairs of joined bodies.

To clarify the derivation of the desired equations (i.e.,
to avoid the necessity of the rather cumbersome notation
used in the general case of n bodies), the development
that follows is presented for the case of three bodies.
A derivation for a specific number of bodies will not only
serve to illuminate the concept of a barycenter but will
retain sufficient complexity to enable a straightforward
generalization to thie n-body case.

A system of three interconnected rigid bodies is shown
in Fig. 1, where point 0 represents the system center of
mass and the vectors P, , ; join point 0 to the mass cen-
ter of each of the bodies. Vectors €5, €15, €21, €25, Cs1, Caa,
or more generally ¢;; (i=%7{), connect the mass center of
body i to that joint on body i that leads to body j. Finally,
the vector R locates the system center of mass with respect

Fig. 1. A 3-body system

Fig. 2. Free-body diagram of 3-body system

to a fixed (inertial) reference. A free-body diagram of the
system, given in Fig. 2, describes the force and torque
relationship, with F; and L; representing vector sums of
forces and torques applied directly to body i. The vectors
F;; and L;; represent reaction forces and torques appear-
ing at joints shared by bodies i and j.

Newton’s and Euler’s vector equations of motion for
each of the bodies can therefore be written as

F, + Fi + Fis = my (R + po) (1)
F, + F,y=m, (B + Pz) (2)
Fo+Fyy=m, (B + Ps) (3)

d
Ll + L12 + Lls + C12 X F12 -+ Ci3 X F13 = E (!1 ° (.01) (4)
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L, + Loy + oy X Fyy = (—% (1 0;) (5)

d
La -+ L31 + Csq X F31 - % (I3 '033) (6)

where overdots denote time derivatives in the inertial
frame. The terms i, , ; are the inertia dyadics of each
body about its center of mass, and ®, . ; are the angular-
velocity vectors of each body.

Equations (1-3) may now be used to eliminate the
unknown reaction forces Fy,, Fis, Fu, and F; from the

As a result, p;, p., and p; can be given as

(€21 — C12) -1 0

(€31 — €13) 0 -1

0 m, ms

Pr = -1 0
1 0 -1

m, m, ms

m,

rotational equations, Eqs. (4-8). Required, however, are
the additional relations

Fio=—Fn, Fiu=—Fy
F,+F,+F,=mR,  wherem=m, +m, +m,
P1— Pz = —Cpz + Cx
P1— Ps= —Ciz T Cs

myP; + meps + maps = 0

m m
= ’;7‘1'2' (021 - 012) + "1',;{: (Csz - 013)

m
P = '1; (012 - 021) + Tné (031 t € — €3 — 021)

m
ps = Rl
By substitution into Eqs. (2) and (3),

mym,

F21:"‘F2+ %(F1+F2+F3>+

mymy

F31=_‘F3+%—3(F1+F2+F3)+

(612 - ‘ézl) +

(613 - 631) +

m
(013 — 031) + _’I—Yf (021 + €13 — €2 — 031)

ey

@

(531 + 612 - 613 - 621)

mymy

(8)

(621 + 613 - 612 - 631)

The time derivatives of the ¢;; vectors, fixed in body i, can be expressed in terms of the angular velocity of body i

as follows:

€z = ‘:01 X € + @, X (wl X €12)
613 = &)1 X C13 + (¢ 2 X (‘1)1 X 013)
.(;21 = "02 X ey + @, X (0)2 X 021)

€51 = @3 X €5y + @5 X (wa X 031)
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After the differentiations indicated in Egs. (4-6) are performed as follows,

B

d .
%(51“(’31):71?(51‘&1) +CO1X(§1°031) = g1°"'31+‘»‘)1><(1'001)

(where 2d/dt denotes differentiation in body fixed frame), Egs. (7-9) may be substituted, with the result:

mym,
m

El'(;)1+w1><(51'(01) :L1+L12+L13+012X(F2_%’(F1+F2+F3) + [Cng(:Ol“'G)lx (&)1Xclz)

. m,m;
_021><w2+0)2><(w2><021)]+ m

{031 X (;‘)3 — w3 X (ws X 031)

+ (012 - Cls) X ‘;)1 —; X [e, X (012 - 013)] — €y X ‘;32 + @, X (oo2 X 021)})

m,m;

m .
+C13>< (FI&—E‘%(FI +F2+F3) + [013 le _w1>< (ﬁh Xcl:-;)
m,m,

—031><(;)3+003X(603XC31)]+ :rl

> {021 X (bz — @, X (0)2 X 021)
+ (013 - c12) X ‘;)1 -, X [@, X (013 - 012)] — ¢y X (:)3 + w; X (ws X 031)}> (10)

Ez'(bz"'wzx(lz"mz):Lz'*'Lzl

2

+c21><<——F2+—1:11(F1+F2+F3)+m;;n [ea1 X 65 — @, X (633 X C22)

m;ms

— ¢ X (:‘31 +w, X ((’)1 X 012)] + {c, X ‘;32 — @, X (C‘)z X 021)

+ (013 - clz) X (;31 —a; X [e; X (013 - 012)] — €3 X (;)3 + @, X (w3 X 031)}> (11)
e @y + 0y X (§° @) = Ly + Ly,

+031X<—F3+%(F1+F2+F3)

moms

[031 X (;-’3 — w; X (033 X 031) — ¢ X ‘:01 + 0, X ((.01 X 013)]

m.m, . .
+ 1217. > {esr X @3 — @3 X (03 X €31) + (€12 — €15) X @, — @
X [601 X (012 - 013)] — Ca X (;)2 + , X (("2 X czl)}) (12)
Since*
eX[oX(@Xe)]=—wX[ecX(ecXw)]
*See Appendix A.
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similar terms may be collected in Eq. (10) as follows:

B - t':‘)1 — ¢, X (dlz X (‘)1) — e X (d13 X “)1) + @ X <§1 ° (‘)1) — 0 X [012 X (d12 X (’01) + ;3 X (dls X wl)] =

Ll +L12 +L13 +012 X [Fz —%(Fl +F2 +F3)] + Cis X [Fg - %(Fl -+ Fz +F3)] - d12 X (021 X (;)2)

—di5 X (€a1 X @3) — @, X [de; X (021 X ‘92)] — oy X [dy X (c:-u X ;)] (13)
where
m,ms; m,ms m,ms m;m, my;m;,
d,, = c + 12 m 13 dpy = m €y + 21
myms momsg msms mimsg m.mg
dy; = O 13 m 12 ds; = m 31 31

Similarly, in Eq. (11),

oy — € X (d21 X ‘-‘)2) + @, X (Iz 2 6d,) —

where

Finally, Eq. (12) becomes

I ° 05 — €51 X (dsy X ws) + w3 X (Ea'ma)

where

@, X [z X (d21 X ")2 ]

L, + Lp + ¢ X |: +——F1+F2+F3) dy, X @, — djy X 6]

— 6y X [€a1 X (diz X 6;)] — @5 X [€21 X (dsz X 63)] (14)
d32 = 1.1 Cz1 — M Cso
m m

— w3 X [031 X (d31 X 0‘)3)] =

L3+L31+C31X[~F3+%(F1+F2+F3) —d13><(;)1—d23><(;)2:|

— o X [eg X (dys X )] — @, X [ea: X (dzs X @;)] (15)
dss = m::la C21 = e Cos

Referring now to Fig. 3, it is possible to view each of the system’s rigid bodies as having a mass concentrated at its
joint(s) equal to the sum of the system mass connected to that joint. One can then define a new “center of mass” for
each body in terms of these “fictitious” masses and its own mass. Thus,

For body 1:

m,b.; + moby, + msby; =0, €12 = b1z — by, €13 = b1z — by,

For body 2:

Msbz + mby; + mbe; = 0, Co1 = Co3 = by; — boy = bas — bye

JPL TECHNICAL REPORT 32-1516



BODY 2 3
BARYCENTER BODY 3 my
BARYCENTER—__
ba3
my +mg) (my +m,) \-
BODY 1 bsy, by

BARYCENTER

Fig. 3. Body barycenters for 3-body system‘

For body 3;

Msbgs + mbs, + msb,, = 0, Cs1 = Cgz = ba; — bz = by — by

The vectors b;; then locate those joints on body i which lead to bodies j (when i 54 {) as well as the center of mass of
body i (when i = §) with respect to the new center of mass, called the barycenter (or sometimes the connection bary-
center) of body i. In general, one can verify from the relations above that

1
bii - - - 2 m;c;; and bij = bii -+ Cij
j#t
Furthermore, it is possible to define a new set of moments of inertia for the rigid body, now augmented by mass-

loaded joints, about axes parallel to those originating at the normal center of mass but with origin now at the connec-
tion barycenter. The moments of inertia of “angmented body” 1 would then be given by the parallel axis theorem as

¢p1oo = Liaa + My (bhie + bhyy) + Mo (Ddze -+ biy) + ma (bl + biyy)
by = Ly + my (b3y + b3i.) + ms (b3, + b2s,) + my (b3, + bisy)
b2z = Lize + my (b3yy + DY) + my (b3 + bly) + ma (b3, + bisy)
G1oy = Ligy + Mab11ybiyy + Msbioehysy + msbyghyg,
b1oe = Ligz + Myby1sbi1e + Mpbi2ehisy + Msbigghys,

Pryz = I1yz + m1b11yb11z + mzblzybmz + msbmybwz

where the momental dyadics

i1i11 122 - i1j 11 1zy - ilklI 122 i1i1¢1m - i1j1¢1my - i1k1¢'1a:z
b= —judiliey i1j111yy —jiki Tz and @ = | —jiliay Jidibiyy - i1k1¢1yz
_k1i111z-z —k1j111yz klklllz’z - k1i1¢1zcz - k1i1¢1yz k1k1¢1zz

are used to bring the moments of inertia into a vector equation context.

6 JPL TECHNICAL REPORT 32-1516



Now the terms in Eq. (13) involving @, and @, are examined, and substitution for vectors ¢;; is made in terms of
the b;; vectors:

m. m.
d, = —ﬂTz [mib:; — miby; + mib — msbls] = _17_72 [mby;, — mby; — msby, — msbis] = mubi,

m;

dis = E [m1b13 — myby;, + mybys — m2b12] = % [mb13 — m;by; — mubys — m3b13] = Mgy,

Therefore,

— €1z X (d12 X (;)1) — €13 X (d13 X (’01) = (bu - b12) X (mzbm X (”1) + (bu - b13) X (mabla X &’1)

= —myb;; X (blz X "31) — Mghys X (b13 X ‘:‘31) + ms;by; X (b1z X 6)1)

m, .
+ 7n3b11 >< [("— %bll - Efb12> >< (01]

3

= —mby X (bu X ‘:‘)1) — mgby, X (blz X 601) - m3b1a X (b13 X (;31)
Similarly,
— 0y X [ee X (dlz X 001) + ¢35 X (d13 X m1)] =

— @y X [myby; X (b X 0;) + msbye X (bi: X 0;) + msbys X (b13 X @,)]

Terms of the type b X (b X ®) generate the following set of relations:

i i k
bXw= bm by bz = (wzby — mybz)i -+ (mmbz — Q)zbm)}. + (wybw - wwby) k
g oy Wz
i i k
bX(bXw) = b. b, b, = [0z (— bj — b) + oy (beby) + 0. (bb,)] i

(0shy — agbs)  (wobs — wsbs)  (aghs — wiby)

+ [‘L‘y (bmby) + oy (" bz — bg) T oy (bybz)] J
~+ [z (behe) + wy(byby) + 0 (—b% — b)1 k

The result, of course, is that the terms —myby; X (by; X @,) or —myby; X (byy X @), etc., may be represented by the
dot product of a momental dyadic with the angular velocity (or acceleration) vector:

iim, (bﬁy + bfn) - 1.1]'1"7111911:017111/ - ilklmlbllmbllz
— mybyy X (bn X 691) = - i1i1m1b11:cb11y Juimy (b%w + b%m) - i1k1m1b11ybuz ° (;)1 =&y ° ‘;)1
— kyimibi1,bias - klilmlbllybllz k. k.m, (bgw + b%w)

JPL TECHNICAL REPORT 32-1516 7



Also,
— mMyby, X (b12 X c",01) = @00
— m3b13 X (b13 X d’l) = Py3° (;’1
so that Eq. (13) for body 1 (since &; = §; + @11 + &:, + ®y3), becomes

m,
m

. m
(191'0)1+601X(<§1"601)=L1+L12+L13+012X [Fg"‘ (F1+F2 +F3):| +013X [Fg_';rf(Fl +F2+F3):|

- dlz X (021 X "32) - d13 X (031 X ‘;)3) — 0y X [d12 X (021 X wz)] — w3 X [d13 X (031 X ws)]

(16)
Completing the substitution in Eq. (16) for ¢;;-type terms results in
. m, ms . .
- d12 >< (C21 >< wz) - ('— M2b12) >< l:(bgl + H bz]_ + Ebzl) X wg] = - mb12 >< (bg]_ >< &)2)
2 2
- d13 X (031 X (;)3) - (—— m3b13) >< L(bgl + %bgl + %bm) >< (;)3] - — mb13 >< (b31 >< (;33)
3 3
and
clzx [FZ_%Z'(FI +F2+F3)]
m, m m m. m
+ e X I:F3 - ﬁ(Fl +F, + F3):| = (b12 - bn) X (E’I‘Fz + 'j’sz —%&Fl - REFg)
m m m m,
+ (b13 - b11) X ("”%Fg + Est - ﬁFl - '1‘7:3F2>
1
= m (— mzb:, — msbys + muby + miby) X Fy
1
+ E(m1b12 + msby; — m1b11 - m3b13> X F,
1
+ m (— myby, + mibys + mob; — mibyy) X Fy
:b11XF1+b12XF2+b13XF3
Finally, Eq. (18) becomes
11)1-(;)1 +@; X @00, =L; + Ly; + Lys + by XFy + bie X F, + bys X Fy—m{bs;s X (bz X‘bz)
+ b13 X (bsl X 0-03) — @, X [bm X (bzl X (1)2)] — Wy X [b13 X (bal X wg)]}
or
where

.

buy = G, X by, + @, X (@, X by)  and by = 65 X bay + @, X (62 X bsy)

8 JPL TECHNICAL REPORT 32-1516



In the same manner, Egs. (14) and (15) can be simplified by substitution of the barycenter vectors b;; and the use of
augmented inertia dyadics to obtain

B, 06y + @, X @00, = Ly + Lyy + by X Fy + oy X Fy + byg X Fy + m (bsy X by + bag X bas) (18)
5+ G + @y X By ° @ = Ly + Loy + by X Fy + bay X Fy + byg X Fs + m (bsy X by + bys X byg)
L= —L,, L;iy=—-Lg (19)
where ®; and ®; are obtained by substituting subscripts in the expression already given for &;.
Euler’s equations for the given 3-body system, as embodied finally in Eqgs. (17-19), when joined with the appropriate
differential equations relating angular velocities and positions (kinematical equations), may be integrated by a computer

for the dynamic solution. In general, connecting joints in the system will not necessarily allow three degrees of rotational
freedom. As a result, unknown torques due to such “rigid constraints” will appear within the L;; terms.

Ill. The Generalized n-Body Equations A general expression that may be substituted in Eq. (20)
is required for Fig. Equation (21) provides the needed
relation, but it may be helpful to examine a particular
system of connected bodies, e.g., the one shown in Fig. 4.

The set of vector equations developed for the system
of Fig. 1 and formulated in terms of body barycenters is,
with one minor modification, the set applying to all 3-body
systems. If all the possible L;; terms(i=1,2,3;§ = 1,2, 3;
iz%j) are included in each vector equation, the set be-
comes perfectly general, Specialization of the set to a
particular system would then require some of the L;; to
be dropped since no closed-connection loops are per-
mitted.

It is, in fact, rather obvious from the subscript pattern
how the equations would be extended to larger systems.
The proof of the generalization to n bodies is pursued in
much the same manner as the development for three
bodies. Beginning with the general equation of rotation

for body A, Fig. 4. An arbitrary 7-body system
Zheoy =L+ 3 Lag + 2 e X Fag (20) The set of force equations applying to this system and
dt B#A B=A
corresponding to Eq. (21) becomes:
where A =1,2, - - - ,n and where 8 denotes those bodies .
directly sharing a joint with body A. Generalizing from Bodyl: F, + Fy, +Fyy + Fp + Fiy = m. (R + py)
Egs. (1-3) results in the force equation .
Body 2: F,+ Fy; =m (R +ps)
Fi+ 3 Fag=m &+ py) (1) Body 3: Fo+ Fao=ms (R + po)
B=A
and Body 4: F,+F,=m, (R + Ps)
2 Fa=mR Body 5: Fy + Fy + Fyo = mg (R + po)
where Body 6: Fo+ Fo; + For = Mg (R + Pe)
m.—_%ma, =123 - ,n Body 7: F7+F76=m7(ii—l—§7)

JPL TECHNICAL REPORT 32-1516 9



To solve for F;, for example, one could add equations
for body 6 and body 7 and, realizing that Fig = —Fp,
obtain

F65 = _FG -_— F7 + (m6 + m7)ii + meiss + m7§7

However, since Fss = —Fs6, equations for bodies 1-5
could be added to give
F65= _F55:F1+F2+F3+F4+F5
—-(m1+m2+m3+m4+m5)f{
- m1§1 - mzﬁz - mab‘s - m4i54 - msﬁs
That the two expressions for Fg; are equivalent can be
easily verified, since
S mapa =0
The latter expression gives the reaction force excrted on
body 6 through the joint leading to bodies 1-5, in terms

of applied and inertial forces due to these same bodies 1-5.
To generalize, then, for Fig, one can write

Fip = S[F, - MR — 1myy] (22)

where 7 includes those bodies which are directly or indi-
rectly connected, through an intermediate chain of bodies,
to body A through the joint it shares with body 8.

Therefore the term

> g X Fag
BzA

in Eq. (20) may be expanded as

S agXFag= 3 o X [2 (Fyp— mni'% — mnﬁn)]
2 Bz 7

(23)
Again, note that all the vectors ¢ya, «a =1,2,3, - - - ,n,
A=123 - ,n (A5£4a), exist since ¢ is simply the

vector from body A’s center of mass to the joint directly
or indirectly connecting A to body a. Thus, in the system
of Fig. 4, €5 = Ce1 = Cg2 = Co3 = Cge. As a consequence
of this built-in redundancy and since, in Eq. (23), n ulti-
mately covers all bodies except A, Eq. (23) can be rewrit-
ten as

2cm>'<Fm=2c,\aX(Fa—maii—maﬁa), a=12 - ,n
B#X

a#A

ZECAaX[Fa_%<2FV)‘_ma§a], V:l,zy...,n

azr

my

= 3 ¢ X [Fa"%Fx—;{(E Fa) _maﬁn:] (24)

[EPN

azi

Since the ¢ vectors are related to the barycentric vectors b by

1
b= ——3 macCra
azxl

Eq. (24) may be expressed by

2 o X Fyp= _Z%C,\aXFA —I—Z

B=A azr Az

and bie = b + Cie (25)

m, o
Cre — 2 —1_150)&) X Fy — 2 Cra X MePa

LEDN LEDY

e XEyg= B X T+ Db XFo— S Matia X i.'sa (26)

B#A

a#h azA

The first two terms on the right-hand side of Eq. (26) provide the needed general expressions for the effects of
the applied forces. In fact, they fit exactly with what one might have inferred from the 3-body example. In the third

10
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term, it is desirable to express p. in terms of ¢ vectors
and, one hopes, barycenter vectors b.

In general, for any two bodies A and p in the set of
bodies numbered from 1 to n,

Pr— Pu=cm — eap + 3 (eir — Cip) (27)

where i now refers to those bodies in the chain connect-
ing body u to body A.

Then if, as is done in Ref. 1, both sides of Eq. (27) are

multiplied by m,/m and the summation over all ps~)
is made, one has

m, m
Y Ty =
JLEDE W#EM
m
E EM‘[CM —cpt+ 2 (e — ciu):l

B#EA

m, m
Px(l—'ﬁ%)“z 7n‘&Pu=
ITT
E %[CM_CW"‘; (Cih”cw):l

pEA
since, by definition of the p vectors,

n

my, _
™ =0
k=1
P = E % I:Cp,h — Cap + 2 (Cih - cip.)]
e z
or
pr=bu + E % I:CM + = (en — Cm)] (28)
pEA

Further, it proves useful to extend the summation over
bodies i to a summation over bodies o, where « includes
all bodies in the system except p and A. This does not
change Eq. (28) since, for those bodies not included in
the chain connecting u to A, €ax = €au and nothing is con-
tributed to the summation:

2 (Car — Cay)
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As a result,
_ 2 :_’@ Z :_".‘ﬂ -
pr=bhun + el 1S + ™ [a%t(cax Coqu)]
B nEA a#A

(29)

Since the subscripts « and y both range over all the
system bodies except A, subject to the given restrictions,
they can be interchanged in the final term of Eq. (29) and,
if the order of the summations is interchanged as well,
one has

B B#EA @z
azp
But
ma c m—‘m}‘_mp,
— )y = ————
m m H
azh
atp
mp, my,
=Cur — — Cux — —— Cua
( m (o m M
Thus

z : m 2 : Mo
Pl\' = b)‘)‘ + <0p)~ - Z’ cp,,\, - —1'; c”a>

LD a#A
oy
= b)‘)L + E (CP,)L - %‘ Cp.a)
BRrA a*p
pr=Dbu + T bu (30)
TEDY

The last term in Eq. (26) can then be expanded as

__E MaCra X ﬁa = ———2 MeCra X (:l')aa + 2 .i)p,a) (31)

a#EA aEL T

From the relations of Eq. (25) one can derive the fol-
lowing:

My m
Meboe + 2 mubaf.t =——3 MuCop. — -+ 2 myCap
REA pza m pra
pra
+ 2 MyuCap

pEe

M m,
=y - = + 1 ° 2 mp,CQH
m 2 : m ot
pte

11



Therefore,

mabaa + 2 mp,bap = O (32)

pea

Equation (31) can therefore be written as

a#d LEP

. 1 e - .
— 2 MaCra X Lo = = Mura X { —— 2 mpbap. + bae + 2 b)w
Pensa has

= E MyCaa X i;ap. -2 2 MaCra X i;;m - 2 MaCre X if-)ha

azd pra

arX pZa a#Ed

f#EA

Subscripts « and p may be interchanged in the second term of the preceding equation to give the following:

_2 MeCra X ﬁa = 2 2 MuCre X .f)ap - 2 2 MmuCap X i;oq; - 2 MoCra X BAa

aA azl pza B#EA QEL a#rd
agd
= E E ’chM >< ba” - 2 mp,c,\_y, >< bau - E MaChra >< b)‘,a (33)
pza nEM a#A
azd prEa

For the expression within the parentheses above, « and
) are of course fixed, and p ranges over the system bodies
under the restrictions shown. However, for those bodies .
that are directly or indirectly connected to a joint on
body A which also leads, directly or indirectly, from body A
to body @, cxa = cap. For example, in Fig. 5, if @ = 6 and
A =2, Co5 = €z = Cor, 50 that for u = 5,7 no net term is
contributed in Eq. (33) from the summations over p.

Furthermore, ba. = ba, for those remaining bodies p
which do contribute nonzero terms to Eq. (33). The result
can then be rewritten as

""2 MaCra X 5(1 = E [( 2 muCire — 2 mpﬁ)»y) X i;ak]
a#Er e pEo PIEDY

pra

- 2 MuCra X i;)ux

aEL
= E [(m - mu) Cre — 2 mp,cxp] >< baA,
BEM ~
a#d pta

- 2 MaCra X .b)m

TN
= E Mmera — o MyuCap )} X baa
pEA
azEL

12

- 2 MaCra X Bka

azd
m X
= m(c,\a - 2 —+ c/\[.l) X ba)t
Z pear M
azM
— 3 MaCra X bra
azd

and, finally,

_‘E MuCra X 5& - 2 mbye X Bou\ - 2 MeCra X .]f.)/\a
a*E: @ LE2S
(34)

BODY a

Fig. 5. Another 7-body system configuration
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Returning to Eq. (20), one can now write it as

d "
— Loy + 3 Mcaa Xbae=La+ 3 Lag + b X F,
dt ax) BA

-+ 2 b)we X (Fa + mBax)
['EPY
(35)

where g is restricted to those bodies directly sharing a
joint with .

Since b is a vector fixed in body A, it is natural to
express by, in terms of ®, and @,:

i;m = @) X bra + @1 X (001 X bra)
Likewise,
if;ax = fba X bar + s X (wu X ba)»)

Also, the second term on the left of Eq. (35) can be ex-
panded as

2 MaCra X '1:));01 = > me (bha - bxx) X -l;xu

a‘Edr a#A

Therefore,

S Matra X bae = maban X gm + 3 mabre X baa

a#h LEDY
Again, one is faced with the terms of the type
bX[0X(®Xb)]=—0X[bX(bXw)]

and
b X (@ Xb)=—b X (bX®)
and, as shown earlier, each of these can be written as a

dot product of a dyadic with an angular velocity (or
acceleration) vector. Thus,

—@y X [mabay X (bar X 0,)] = 03 X ®rp vy
—mabar X (ba X 6) = Dy 6y

—3 @y X [Mabre X (bra X @)] = o X 3 o @y

a#EA aEL

"‘2 Mabra X (b);u X d))») - 2 Dre® d))t

LEDY azA

Consequently, Eq. (35) can be reduced to

By + o X drewy =Ly + I Lag+ b X F

= 3 mabia X f)xa —ba X 3 maii.)m pri .
azd a#h -+ 2 b)ux X (Foz + mbak) (36)
a#EL
Using Eq. (32), one obtains where
2 ma'l.))»a: '_m)j;M\ Q)L:l)»_}_z Pira, a:1>2,3> R (7
az) a
and
i)jx (bﬁay + bﬁaz) _'i)‘jhb};azb,\ay _ixk,\bmzb,\az
Bra = My —i);i)\b)\azb/\ay ikih (b?\a:c + biaz) _].Akkbkaybxaz
""k)\i)‘b)‘a(wb);az _kAjAbhaybAaz k)‘k}\ (biam + biay)
or Equation (36), then, is the general equation of rota-

Bra = Ma [(bre* brs) E — basbae]

where E is the identity dyadic.
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tional motion for each body A in the system of n con-
nected rigid bodies expressed in terms of barycenter
vectors and a new inertia dyadic ®, about the barycenter
of the body A.

13



V. Constraint Torque Elimination

Equation (36), the set of differential equations describ-
ing the attitude of each rigid body in the system, can be
solved for the unknown &, values once the system’s geo-
metric and physical properties are known, the applied
torques and forces are specified, and the characteristics
of each joint are described. Actually, the preceding state-
ment is not quite correct, in that the system unknowns
usually will not be limited to angular accelerations but
will also include certain unknown torques of constraint
at one or more joints. This occurs when a joint does not
permit more than two degrees of rotational freedom be-
tween adjoining rigid bodies. As a result, although three
degrees of rotational freedom are possible for a body, the
nature of the joint, i.e., whether it is a single- or two-
gimbal joint, will reduce the degrees of freedom to one
or two and will inject constrained modes of rotation and
unknown constraint torques.

Reaction torques at the joints are described in Eq. (36)
by the term

> Lag

B

which may be broken dowm into more detail as follows
(Ref. 1):

3 L= 3 Ly + 3 8, L (37)

BzA B=A

where

L%, = reaction torque on body X at the joint connect-
ing A to B due to their relative motion about
gimbal or hinge axes

n = number of constrained modes of rotation;
n, = 3n — n’, where n’ is the number of degrees
of freedom in the system

uf = a unit vector directed along the axis of con-
strained motion

L¢ = magnitude of the constraint torque directed
along u;

0 if u¢ is not defined for a joint on body A
8ri = { +1if Léu¢ is a torque on X
—1if L¢u¢ is a torque on 8

It now becomes convenient to move from consideration
of the vector differential equation dealing with a single
body of the system to a matrix representation of the entire

14

set of equations describing the system’s rotations. Begin-
ning with Eq. (36), an equivalent representation in terms
of matrices can be given by

S Araire = Ex + U,L¢ (38)

where

A = the 3 X 3 matrix of body A compo-
nents of @,

Axaira (25~ 1) = the 3 X 1 matrix of body A compo-
nents of the vector D * @« produced
by the term

—mbas X (d)a X bah) = mbaa X (bah X (;)a)
= Die ‘;)a
where
D,\a =m [ba,\b}ta - (bah ° b)uy) E]
da = 3 X 1 matrix of body « components of &,

Uy = 3 X n, matrix whose ith column consists of the
body A components of §,,u¢

L¢ = n, X 1 matrix made up of L¢

E, = 3 X 1 matrix of body 1 components of the re-
maining terms of Eq. (36), namely

—@y X ey +Ly+ 3 Lfﬁ + b X Fa

SN

+ 3 bie X [Fa + mw, X (wa X bah)]

azh

A system matrix equation can now be constructed from
the n-equations given by Eq. (38):

Ao =E+ UL (39)

where

3n X 3n

@
®
°
L] ® >
°
°
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o1 E,
=121, 8nx1 E=|-22], 38ax1
£ ES
U]
U= _E{E_ , 3n X n,
| U, ]

Additional equations are required to specify the con-
straint conditions and thereby provide sufficient informa-
tion for the solution of both & and L°. A pair of joined,
rigid bodies is shown in Fig. 6 to illustrate the constraint
condition.

UC
HINGE AXIS
\

\ L w
1
\ ——i

/ ’
v BODY 2 /

Fig. 6. A pair of joined, rigid bodies

The two bodies are “free” (subject to friction, spring
constants, etc., in the hinge) to rotate relative to one
another about the single hinge axis. However, no rela-
tive rotation is permitted about any axis perpendicular
to the hinge axis. It is apparent that the relative vector
rate of rotation ¥ can have no components in the plane
perpendicular to the hinge axis. Two vectors, u¢ and uj,
are needed to provide a basis in the plane perpendicular
to the hinge axis. One can then describe the constraint
as follows:

weW=ut (0, —w)=0
and

uge (@, — ;) =0
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or, in general,
ug+ (@1 — @) = 0 (40)

The matrix U contains the components of each ug de-
scribed in the coordinate system of each body to which
it applies and accounts for the sign of the constraint torque
shared by that body. A matrix equivalent to Eq. (40) for
the entire system can be written as

Ufo =0 (41)

From a systems or control analyst’s point of view, the
actual values of the various torques of constraint L are
usually of little or no interest as long as their effects
are included correctly in the dynamic model. Between

Eqgs. (39) and (41) these torques can be eliminated in a
straightforward manner (Ref. 1).

Differentiating Eq. (41), one obtains
UTo + UTo =0 (42)
Through the use of Eq. (39),
UT [AE + AUL] = —UTo
Le = — (UTA*U)* (UTAE + UTo)
and finally, through substitution back into Eq. (39),
Ao = E — U (UTA-U)* (UTAE + UZo)

or
6 = A'E — AU (UTA-UY* (UTAZE + U%w)
(43)
Usually, A and U”A-*U will not be easily inverted except
by the aid of a computer. It would then be convenient to
allow the machine to solve the pair of matrix equations,

Eqgs. (39) and (42), numerically (by Gaussian elimination)
from the combined form:

where Eq. (44) is of order (3n + n.).

Another method, described by Velman (Refs. 3 and 4),
for the elimination of constraint torques from the system
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matrix equations makes use of the pseudoinverse of U”
(Refs. 5 and 6). The pseudoinverse of UT is defined by

U = U (UTU)*
so that UTU™ = I = identity matrix.
Multiplying Eq. (42) through by U, one obtains
UT™UTy = — UT*UTy
or
Go=M(t) (45)
where
G = U™UT = U (UTU)1 U7, 3n X 3n (symmetric)
M= —U™Uy = ~U(UTU)* U, SnX1
If the matrix F is defined by
G+F=1I
Then Eq. (39) can be written as
A(G+F)o=E+ UL*
Multiplying through by F, one obtains
FAG& + FAF & = FE + FULe
= FE + [I - U(UTU)*U*] UL¢
FAM + FAF & = FE
or
(FAF)& = FE — FAM

However, although L°¢ has been removed from the
matrix equation, this result is not suitable for computer
solution of & since FAF is singular. But, by adding
Ga to each side, this obstacle is overcome:

(FAF + G)o = FE + (I — FA)M (46)
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or

Ao=F 47)
where (FAF + G)* exists and Eq. (47) is of order 3n.

Of course, the product FAF must be computed, and,
as Velman points out, unless FAF can be obtained without
executing all 2+ (3n)? multiplications, the direct numerical
solution of Eq. (46) will not be even as efficient as that
of Eq. (44).

Unfortunately, in the barycenter formulation, the
F (or G) matrix is not diagonal (since angular velocities
are not expressed as relative quantities) and this dis-
courages speedy handling of the FAF product.

As an example of how F appears in the barycenter ap-
proach, the simple two-body system of Fig. 6 may be
examined. Bodies 1 and 2 are connected by a single-
degree-of-freedom hinge.

Arbitrarily one can align the body 1 fixed basis, [a], in
such a way that the hinge axis is parallel to a, and the
hinge constraint unit vectors ug and u¢ are in the a, and a,,
directions respectively. Then U, is given by

0 0
U;=| 1 0
0 1

where column 1 contains the components of u¢ modified
by the sign assumed for L¢ on body 1 (positive in this
case). Column 2 contains the components of u¢ in body 1
and assumes L¢ is positive for body 1.

Assuming that the body 2 fixed basis [b] is identical to
[a] when ¥ = 0, the constraint matrix for body 2 is

0 0
Uy=| —cos¥ sin ¥
—sin ¥ —cos ¥

where columns 1 and 2 represent the components of
u¢ and u¢ in the body 2 basis modified by the signs of
L¢ and L¢ for body 2 (which must be negative since they
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were assumed positive for body 1). Thus the matrix U is constructed from U, and U as

0 0
1 0
U, 0 1
U=l--i]= (48)
U, 0 0
—cos ¥ sin ¥
| —sin¥ —cos¥ |
From the definition for U™ and G one finds that
K 0 0 0 i
0 0 —05cos¥ —05sin¥
05 0 0 0.5 0 05sint —05cos¥
G=UUrU)Ur=0U0 Ur =
0 05 0 0 0 0 0
0 —0.5cos ¥ 0.5sin ¥ 0 0.5 0
| 0 —0.5sin ¥ ~0.5cos ¥ 0 0 0.5
and, therefore, F is given by
1 0 0 0 0 ]
0 05 0 0.5 cos ¥ 05sin¥
0 0 0.5 0 —0.5sin¥ 0.5 cos ¥
F=I-G= 0 0 1 0 0 (49)
0 0.5cos ¥ —05sin¥ 0 0.5 0
| 0 0.5sin ¥ 0.5cos ¥ 0 05 |

(It is easy to verify that FG =0, FF = F, GG = G, and
GF =0)

While the system matrix equation, Eq. (47), has been
freed of the unknown constraint torques, the constraint
conditions are necessarily, of course, still embodied in this
equation. As a result, n, of the total 3n components of the
system’s & column matrix can be expressed as functions
of the remaining 3n — n, components. In other words, the
system of n rigid bodies possesses only 3n — n. degrees
of freedom, and it is these components that are of primary
interest to the analyst.

The first step in identifying the free components of

angular acceleration (or velocity) is to designate one of the
n bodies as the “base” body. The base body will then be
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assigned three degrees of rotational freedom, by definition.
Although any of the bodies could be taken as the base
body, it will usually be clear that one particular body of
the system should be so designated—perhaps, as in the
case of a space vehicle, because it carries certain optical
or inertial sensing devices designed to provide a very
stable platform for other system parts requiring precise
inertial orientations.

With the base body having been chosen, a set of con-
strained components of angular acceleration must be
chosen from the remaining bodies of the system. The
number of constrained acceleration components chosen
from each body must correspond to the number of con-
straint conditions imposed at the hinge which connects
it either directly or indirectly, by an intermediate chain,
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to the base body. Since the system is connected in the
form of a tree, it will always be possible, even though a
body shares several joints with other bodies, to pick that
single joint which leads from the body in question to the
base body.

Equation (47) can then be rearranged and partitioned
in such a way that

r : Afre] { or E%
VR PN R (50)
cFP | CcC (I)C E(]
and op can be obtained by a numerical solution tc the
relation

[A;T‘F - :vc (Az'o)'l {JF] op = Ep —

7o (Abe) ™ Eg (31)
(provided that (At¢) exists) where
op = np X 1 column matrix of “free” or unconstrained
angular acceleration components

@c = n, X 1 column matrix of constrained angular ac-
celeration components.

np = number of system degrees of rotational freedom
= 3n — n,
= np X np

Ate

fl

n. X 1,

The angular velocities . can then be obtained as func-
tions of vy from Eq. (41). For example, in the system of
Fig. 6, body 1 is chosen as the base body and wsy, .. the
components of w.. From Eqs. (41) and (48),

w1y — COS ¥ ogy — SIN T wy, = 0
o1, + sin ¥ wyy — €05 Tz, = 0
and
Way - Wiy cosv¥ — Wiz Sin ‘I’
0gp = 012COS ¥ + o, Sin ¥
On the other hand, since the product FAF in Eq. (46)
is not easily handled (F is not diagonal), much the same
approach, i.e., of matrix partitioning, may be applied to

Eq. (44) where the constraint vector o, is enlarged to
include the torques of constraint Le.

Recently, Hooker (Ref. 7) has described a technique for
explicitly eliminating the constraint torques from the

i8

system equations, thereby obtaining 3n — n, scalar equa-
tions, i.e., the same number as the number of system
degrees of freedom. The technique is based on the selec-
tion of a base or main body and the description of the
other bodies’” angular velocities in terms of the main body’s
« and relative rotation rates at the joints. By re-expressing
Eq. (36) in these terms and summing over all bodies
A(A=1,2 ---,n) one obtains a vector equation in
which all components of constraint torque cancel. Addi-
tional scalar equations for the relative angular accelera-
tions are obtained by selective summations of Eq. (36)
and suitable coordinate projections.

This technique is not employed here, although it ap-
pears to promise a computational advantage over methods
dealing with 3n system equations (as in this report). The
advantage is not always clear, however, since additional
numerical operations are needed to put the system equa-
tions in the form described by Hooker.

The method chosen here for the development of a
general-purpose subroutine (MLTBDY) capable of solving
the dynamical equations for a multi-rigid-body system is
based directly on Eq. (43). Figure 7 illustrates the steps

INPUT
U, U, w,
FORCES, TORQUES,
ETC.

COMPUTE

SOLVE

(4] v

[efu]} | v =47

COMPUTE
A 'E, U,
u'a-lu

OBTAIN i
V3= WA (UTA e + 0T

!
©)

COMPUTE
w=y;tyyys

SOLVE
[UTA"U] v} = [UTA"E +UTw]

Fig. 7. Procedure for selution of system equation
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involved in obtaining the solution for & components. Fol-
lowing the formation of A and E, step 2, the major time-
consuming operation, requires the solution of the matrix
equation

[A] [y1i Y] = [EI{ U] (52)

The time required to solve the equation above for a
given n does not change appreciably when n, varies
(U is 3n X n;). Step 4 requires the solution of a matrix
equation of order n. and, while it constitutes the next
greatest time-consuming operation, is relatively fast com-
pared with step 2. Thus the approach taken results in a
computation speed consistent with solving a matrix equa-
tion of order 3n.

V. Symmetric Rotors

It is clear from the general equation of rotation, Eq. (36),
for a particular body A, that “acceleration coupling” be-
tween X and the remaining system bodies does not occur
provided that bae = 0 for all a4\, Under these circum-
stances, a computational advantage accrues since the order
of the system matrix equation is reduced through the
decoupling from body A rotational acceleration terms.
While certain coupling effects remain between A and the
rest of the system, they appear only as gyroscopic
(@ X I-w) terms or rotational reactions at the connecting
joint—terms which enter only into the right-hand side
of Eq. (39).

Tke requirement that bae = 0 for « 5% A is certainly met
for any rigid symmetric rotor whose axis of rotation is
fixed to another rigid body of the system. Since the sym-
metry assures that the rotor’s center of mass is on the
rotation axis, the location of the “joint” connecting the
rotor to the remaining system can arbitrarily be shifted
along this axis and placed at the rotor’s center of mass.
Thus the center of mass and the connecting joint coincide,
ensuring that by, = 0 for all 54X (A is the rotor). Of
course the same result is obtained for the idealized case
of a rotating sphere attached to the system, the point of
rotation being fixed in another rigid body. However, the
application to symmetric rotors will be pursued here
since such rotors are rather frequently employed in space
vehicle configurations.

To develop the explicit relationships between the sym-
metric rotor and the system it is necessary only to consider
the rotor equation and the equation of the body to which
the rotor is attached. Assume then that the rotor, labeled
body 2, is connected to body 1 in such a way that its axis
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of rotation is fixed in body 1. From Eq. (36), an equivalent
set of matrix equations can be written:

(I)]_(I)]_ + 514)1&)1 - L1 + L]_z + 2 LlB (53)

B=1,2
Poddp + Doy = L (54)

The vector cross-product @ X ¥ is represented by the
matrix operation v, where

0 w3z Wy
% = skew symmetric matrix = 3 0 — oy
— W2 W1 O
and
of = [w1 w2 m3]

0T = [0, v, U]

It is assumed in Eqgs. (53) and (54) that external forces
are not applied to body 1 or 2 but that body 1 may be
connected to other rigid bodies. Thus the term

2 LIB

B=1,2

is retained for generality. Also, an external torque term is
supplied to body 1 while none is assumed to be applied to
the rotor. The usual magnetic torquing of a rotor is
included as part of the hinge reaction torque L, (= —Ls,)
since it is inherently internal. Of course, any rotor bearing
friction or damping characteristic will be a part of L., as
well as any constraint torque.

If bodies 1 and 2 were the only bodies in the system,
Eqgs. (53) and (54) could be combined in the form

¢ 1 0 1 Ul{a —3, ¢ 0, + L, + L5,
“o_"i"—(;s;__f"ff_ a0 = Bipee, TLE
up pour g 0 (L ~Ufo, — Uo,
(55)
where
L2, = —LE = reaction torques about the rotor

bearing axis (in general, 3 X 1).

Equation (55), in fact, is somewhat more complicated
than it need be, since two components of w, are con-
strained and can be written as explicit functions of the
components of ,,
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An approach to the solution of Egs. (53) and (54) that
results in a desirable simplification will now be pursued.
1t involves, first, the decomposition of ®, into a sum of @,
and a relative rotation rate of the rotor with respect to
body 1. That is,

W, =, +Or

where r is a unit vector directed along the rotor’s axis of
rotation and @ is the scalar rate of relative rotation.

Also,
@, = [uz]T g
where

[u:]T = [usuzyuz.] = matrix of unit vectors along or-
thogonal coordinate axes fixed in
body 2 (rotor)

and

02 = [wapzy0:,]7 = matrix of ®, components in the

body-2-fixed basis

A coordinate transformation matrix T may be defined
in such a way that

[u,] = T2 [uy]

Therefore
@, = [ul]TT21 wg = [ul]Tml + [u1]TQ1'
since

@, = [ul] w1

r= [u]r
and

wg = T2 (0’1 -+ QT), (T21 = (T12)T — (T12)-1
6y = T2 (&g + Or) + T2 (0 + Or)

It can be shown that
oF = — (T2)7 T
Therefore,
ae = T2 (&, + Qr — QFe, — QTQr)

But Q%7 is zero since it is a cross product of r with itself.
Therefore,

(:)2 = T12 ((1)1 + 5'27‘ - Q"le)

Expanding Eq. (54), one obtains

. - T~ ~
$.T*2 (&, + Qr — QFw;) + (T*%0; + T*2Qr) ¢, T2 (01 + Qr) = Ly

If the equation is multiplied through By T?* (transformation to the [u,] basis) the following equation results:

. T~ T~
T21¢2T12 ((;)1 + Qr — Q?(x)l) + T21 (T120)1 + TIZQT) quTlZ ((1)1 + QT) = T21L21

(56)

The term T?'$,T** can be shown to be the inertia matrix of the rotor in the body 1 basis and will be designated as I.

Thus, the terms in Eq. (56) can be evaluated one by one as

T21¢2T12 =]

~

~
T=1 (mel) $.T 0, = T2t (T12w1) T2 (T21¢2T12) 01 = 3110

T~ S~
T2 (T20r) $oT20, = T2 (T22Qr) T2 (T?2$,T*%) 0, = OFlo,

™~/

T21 (lea)l) ¢2T1291 = ‘(:)’IIQT

T~
T2 (T*2Qr) ¢, T12Qr = Q%Flr =0

Then Eq. (56) becomes

I(&, + Qr — QFw,) + 1lo; + QFlo; + &,10r = T?'L,,
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(57)
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The statement

FIr=0

holds since ¢, has been defined (in the [u,] basis) as

I, 0 Iy = rotor spin moment of inertia
p.—=1 0 Iy 01, I = rotor transverse moment of inertia
0 Iy
and
0 0
r=[u]?|0|= [w]*T=2| 0 | = [w]?r
1 1
For the same reason, it can be verified that (equivalent to a dot multiplication of the original vector
equation by us,) is
71—Ir=0
0
and Eq. (57) is further simplified to W, = [w]%e; = [w.]?] 0
Lo, + oy + I0r — (107) 0y = T Ly, 1
e¢,0, -+ e§52¢2w2 = e§L21
Since
Therefore,
0
Ir= T21¢2T12T21 0 | =Igr Isdrge = Ligas (60)
1 Since
then
Ic'ul + ;1)'110.)1 + i"’ - h?tol = T21L21 (58) (‘)2 = wl + Qr

where h = [0 = relative angular momentum of the rotor
in body 1 (scalar).

Equation (58) may now be added to Eq. (53), since
both are expressed in the [u,] basis. The result is

(q_'>1+I)d)1+$1(¢1+1)m1+i’tr—h7w1=L1-|- 2 LIB
g=1,2

(59)

Notice that the hinge reaction torques L, = —Ly
cancel in Eq. (59). The additional equation required for
solution of the system is the scalar differential equation
obtained from Eq. (54) by multiplying both sides by e}
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b2 = T2 (g + Qr — QFw,)
e = €Ta, = eTT™ (&y + Or — QFe,)
r= T?e,

sz = 7oy + 77Qr — 17QF0,

= 1Ty, + Q, since 177 =0

IsrTo, + h = L,
il = Ly — It

or

th=hr= 1Lo1, — 11Ty (61)
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Also,

w2 = T (o + Qr)
Or = T?e, — vy
Q = 1TT%%, — 1T,
hfo; = Is (1"T% 0, — 17e;) Toy
= —a1IgTT?, + &1l o, (62)

Through the use of Eqgs. (61) and (62), Eq. (59) may
be re-expressed as

(¢1 + I - 122) (;)1 +51 (¢1 + I e Izg) [GF} + a)’lIzz (m1 + Qr) =
L+ 3 Lig—1Ls, (63)

B=1,2

where
L, = rlg” = T*le;l el T**

It is clear that, since I = T%1¢,T2, the operation I — I,
simply removes from I those terms involving I, the rotor
spin axis moment of inertia. The value of Q(f) to be
placed in Eq. (63) is obtained from Eq. (61): ‘

¢ L212’
Q =/ Tdt =17 [a; — 010] + Qo (64)
w19 — 01 (0), Qo =Q (0)

As a result of all the manipulation, the presence of a
symmetric rotor attached to body 1 does not in any way
change the order of the matrix equation that must be
solved to obtain the system’s unconstrained rotational
acceleration components. The only additions are the inte-
gration shown in Eq. (64), modification of the ¢, inertia
matrix to reflect the rotor’s x and y moments of inertia,
the gyroscopic torque term shown in Eq. (63), and the
bearing reaction torque L,y,.

VIi. Derivative Eveluation Subroutines

The practical application of the barycenter formula-
tion will, in most cases, require the use of machine com-
putation to solve the resulting system of differential
equations. While, to some extent, each dynamical system
to be studied has certain unique characteristics, it is pos-
sible to systematize, to a large degree, the form of the
equations and to derive general purpose algorithms to
aid in their solution. It is for this reason that FORTRAN
subroutines MLTBDY, MLTBDL, and MLTBD were
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written. These are intended to relieve the analyst of the
drudgery involved in programming the matrix manipu-
lations, coordinate transformations, matrix inversions, etc.,
necessary to implement the general system of equations
discussed in previous sections.

The primary output of these routines is the solution
for &z, the matrix vector of unconstrained rotational accel-
erations, although the &. elements may also be obtained
directly if desired.

A. Subroutine MLTBDY

The subroutine MLTBDY was developed to obtain
the solution to the complete system of equations as em-
bodied in Eq. (36). Two computational approaches to the
problem were considered. The first of these directly im-
plements matrix equation (43) which, it should be remem-
bered, represents the system with constraint torques
eliminated by direct substitution (Ref. 1). An alternative
approach was to deal with the combined system matrix
(Eq. 44) but to partition this to obtain only the ér com-
ponents and thereby avoid solving a matrix equation of
order (3n + n,). Partitioning requires the solution of two
smaller-order matrix equations with some time saving.

Both approaches were programmed and tested for accu-
racy and speed with the first method showing up slightly
faster than the partitioning of Eq. (44). Since the solution
of Eq. (43) also produces all components of &, including
the constrained group, this approach was chosen as the
best general-purpose method, allowing the analyst either
to take the easy way out and obtain all & components
from the program or, if he is so disposed, to obtain &
by writing out the relations to &y explicitly and solving
these algebraic equations. Of course, both ways of getting
e could be used just as a check on the program. Figure 7
charts the numerical steps taken to obtain & by using the
form of Eq. (43).

1. Example: Spacecraft and scanning platform. To
illustrate the use of MLTBDY, a simple example of some
interest from an attitude control standpoint will be exam-
ined, namely a spacecraft of the Mariner type carrying a
sizable instrument platform capable of mechanical articu-
lation. This particular problem may be of interest from
a number of aspects, chief among these (1) the question
of spacecraft attitude-control gas consumption (if mass
expulsion is used) for a particular platform scan sequence
and (2) the question of platform pointing accuracy as well
as spacecraft attitude error (or, indirectly, antenna point-
ing error) resulting from platform scanning activity.
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In the 2-body system, the spacecraft and platform are
assumed to share a connecting joint, which, in this case,
will be taken as a single-degree-of-freedom joint or hinge.
However, provision is made for orienting the hinge axis
in any direction. Figure 8 illustrates the location of the
system’s body-fixed frames, hinge axis, and angular ref-
erences. -Coordinate transformations may be derived as
shown below.

Let angle y rotate the hinge axis h anywhere in the
x;~y, plane, and assume that y, is always parallel to h.
Also assume that x, is parallel to x; when y = 0 and when
a = 0. The position of body 2 relative to body 1 then may
be described by two successive rotations, y and hinge
angle a.

Thus, for rotation v,

i; = cos yi; + sin vj,
jz = —sin yi; + cos yj,
K=k

where i;-j;-k} are unit vectors along x,—y.,~z, after rota-
tion y.

For rotation «,

i, = cos ai} -+ sin ok

je =7z

k, = —sinai} + cos okl

Therefore,

i cose 0 sina cosy siny O{{4i

2y = 0 1 0 —siny cosy O |<#

k. —sine 0 cosa 0 0 1|{k
or

i, COS & COS ¥ cosasiny sine |{i;

j2 = —siny cos y 0 i

k, —sinacosy —sinasiny cosa |{k:

(65)

where i,—j.—k, are directed along the final position of
xg—'yz'—Z2.
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Fig. 8. Two-body system coordinates and
hinge location

The assumption that y, is always parallel to the hinge
axis means that the y, component of body 2’s angular
velocity ®, is a free component while the x, and z, compo-
nents of @, are constrained to be functions of ®,. The
constraint relations may be written in terms of angular
velocity components from Eq. (65):

6, * iy = was = COS & [COS y 0y -+ SiNy 01y] + siD@ 0L,

(66)

@, k, = 0y, = —sina [cosy oy -+ Siny ayy] + €0S @01,

(67)
where
o = 0y °i;
oy = W;° i
01 = @k
Also, the hinge angle rate of change « is given by
& = —awy — (015N y — 01, COSY) (68)
The subroutine MLTBDY of course requires that the
location of any axes of constraint associated with connect-
ing joints of the system be specified. In this case, since
only one degree of freedom is supplied by the joint, two
mutually orthogonal axes of constraint must be chosen.

Arbitrarily, one can assume these constraint axes are fixed
in body 1. Let

u, = cosyi, + sinyj, = first constraint axis direction

u, = k, = second constraint axis direction
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Vectors u, and u, are unit vectors perpendicular to each
other and to a unit vector along the free axis of rota-
tion, j.. In terms of body 2 coordinates,

W = cosai, — sinak,
v, = sinei, + cosak,

A matrix U is used by MLTBDY to obtain the unit
vector components of system constraint torques. These
components are given in the coordinate frames of those
bodies that experience constraint torques at joints that
connect them to other system bodies. The matrix U is
composed of submatrices U;, where U; is a 3 X n, matrix
of body i components of constraint torque unit vectors
for each of the n, total system constraints. If the kth con-
straint, for example, does not apply to body i, since it
occurs at a joint not shared by i, the kth column of U;
has zero elements. In this example,

cosy O —c0Sa —Ssina
U,=|siny 0 U, = 0 0
0 1 sine —cosa

Note that in the first column of U, are the components
of u;, constraint axis 1, since the constraint torque is ex-
erted about that axis. The torque is also arbitrarily as-
sumed to be positive in the direction u, for body 1.
Similarly, in the second column of U, are the body 1 com-
ponents of u,, with the corresponding constraint torque
on body 1 assumed positive in that direction.

Columns of U, contain the body 2 components of u,
and u, but with a negative sign affixed to each to account
for the fact that the associated constraint torques must
be in the opposite direction for body 2.

Matrix U is formed from the U; matrices by

U,

U,

, n = number of system bodies

LU,
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U,
In this case, U = l:—ﬁ—] , (6 X 2)

2

cos y (VI
siny 0
U= 0 ) ! (69)
—COSa —SIN«
0 0
sina —cosa |

The subroutine must also be supplied the time deriva-
tive dU/dt,

0 0
0 0
%]- —U=]|asina —acosal, (y = constant)
0 0
L& Cos a asina

(70)

It remains then, insofar as the characteristics of the sys-
tem connecting joints are concerned, to describe the
nature of any reaction torques acting about the hinge
axes. For the single hinge axis present here, a simple
spring-damper type connection will be assumed. Since y,
is always parallel to the hinge axis, the total hinge reaction
torque Ty on body 2 will be

Ty =Ty*j: = —Ks(ao — @) + Dsa
where
a¢ = commanded hinge angle
K5 = hinge spring constant
Dy = hinge viscous damping coefficient

The components of Ty in body 1 are obtained from
Eq. (65):

Ty = Tsz,
Ty =siny Ty, — cosy Tuj:
Finally, it is necessary only to add the spacecraft’s

(body 1’s) control system which, as mentioned earlier, is
that of the Mariner Mars 1969 series. Figure 9 presents
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Fig. 9. Spacecraft cruise atfitude control system

a block diagram of the attitude control system’s cruise
configuration. Pitch, yaw, and roll switching amplifier
outputs are normalized to =£1. Torques about the craft’s
x, y, and z axes are assumed to be the result of pure cou-
ples; i.e., no net forces are applied to body 1 by the gas
jets. Derived rate feedback in each axis is characterized
by both a “charge” (switching amplifier on) and a “dis-
charge” (switching amplifier off) time constant of approxi-
mately 10 and 20 sec respectively.

2. Subroutine MLTBDY call statements. To summarize,
information that must be supplied to MLTBDY includes:

(1) The number of rigid bodies in the system

(2) The mass of each body
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(8) The inertia matrix of each body (with respect to a
coordinate frame fixed in the body and origin at
its mass center)

(4) The location of each connecting joint (in body-fixed
coordinates)

(5) Body-to-body coordinate transformation matrices

(6) A description of the nature of each connecting joint
(location of rotating axes and constrained axes,
expressions for restoring torque, damping, friction,
etc.)

(7) The angular velocity components of each body
(8) External torques and forces applied to each body
(in body-fixed coordinates)
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Access can be made to MLTBDY by either of two entry
points. The first of these is by way of the following call
statement:

CALL MLTBDY (NB, N3, NC, BMASS, IXX, 1YY, 177,
IXY, IXZ, IYZ, CIX, CIY ,CIZ)

where
NB = number of rigid bodies in the system
(integer)
N3 = 3 X NB (integer)
NC = number of constraint conditions on
the system (integer)
BMASS = array of rigid body mass values start-
ing with body 1
IXX, 1YY, 177,
IXY, IXZ,IYZ = arrays of rigid body inertias starting

with body 1

CIX, C1Y, CIZ = arrays of vector components locating
system connecting joints in each
body-fixed coordinate frame

The terms NB, N3, and NC must be declared as integers

in the simulation main program. The arguments of
MLTBDY should be dimensioned as follows:

DIMENSION BMASS(NB), IXX(NB), IYY(NB),
IZZ(NB), IXY(NB), IXZ(NB), IYZ(NB),
CIX(11 X NB-1), CIY(11 X NB-1), CIZ(11 X NB-1)

To illustrate, for this two-body example,
INTEGERS: NB=2 N3 =6, NC=2

DIMENSIONED VARIABLES: BMASS(2), IXX(2),
IYY(2), IZZ(2), IXY(2), IXZ(2), IYZ(2), CIX(21),
CIY(21), CIZ(21)

The terms CIX, CIY, and CIZ are the components of
vectors ¢;; discussed in Section II. If, for example, a vec-
tor ¢;, were drawn from the center of mass of body 1 to
the joint on body 1, leading from body 1 to body 2, and
its x-y-z components in the body 1 frame were (—1.7, 5.6,
0.23), then

CIX(12) = —1.7
CIY(12) = 5.6
CIZ(12) = 0.23
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Also, if a vector ¢,;, drawn from body 2’s mass center
to the joint on body 2 and leading from body 2 to body 1,
had components (0.85, —4.1, 7.3) in the body 2 frame, then

CIX(21) = 0.85
CIY(21) = —4.1
CIZ(21) = 7.3

It is important to remember also that in a system of
more than two bodies, a joint on body 2, which directly
connects body 2 to body 3, for example, may also indi-
rectly connect body 2 to bodies 6 and 7, so that, by defi-
nition,

Cr3 = Czg — Ca7
or
CIX(23) = CIX(26) = CIX(27)
CIY(23) = CIY(26) = CIY(27)
CIZ(23) = CIZ(26) = CIZ(2T)

All of these values must be input to MLTBDY even
though many are redundant. Note that the subscript of
CIX, CIY, or CIZ is of the form CIX(ij) and not CIX(3, f).
The use of the latter, doubly subscripted form would
have minimized storage space, but the coded single sub-
script form is required if these values are to be supplied
conveniently to a DSL /90 Simulation Language program
via the TABLE card. To repeat, all components CIX,
CIY, and CIZ must be input for all combinations of
i=12 -+ ,NBandj=1,2, - - - ,NBexcept fori =4

The execution of the statement CALL MLTBDY (NB,
N3, NC, BMASS, .. .) initializes the subroutine with the
physical constants of the system and need be done only
once. The subroutine is then ready for subsequent calls
with variable information and the computation of the sys-
tem angular accelerations. This is accomplished with the
following statement:

CALL MLTRAT (NB, N3, NC, TX, TY, TZ, FX, FY,
FZ,U, UD, T, WX, WY, WZ, WDOT)

where

NB, N3, NC = integers as previously defined

TX, TY, TZ = arrays of torque components ap-
plied to each system body (includ-
ing torque about the hinge axis)
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FX,FY,FZ = arrays of force components exter-
nally applied to each body

U = array of constraint torque unit vec-
tor components as defined above

UD = time derivative of the matrix U

T = array of body-to-body coordinate
transformation matrices

WX, WY, WZ = arrays of body angular velocity
components

WDOT = array of body angular acceleration
components

The arguments of MLTRAT should be dimensioned

in the main simulation program as follows:

DIMENSION TX(NB), TY(NB), TZ(NB), FX(NB),
FY(NB), FZ(NB), U(3 X NB, NC), UD(3 X NB, NC),
T(NB, NB, 3, 3), WX(NB, NB), WY(NB, NB),
WZ(NB, NB)

DOUBLE PRECISION WDOT(19)

For this particular example, U and UD have already
been defined in terms of the angles y and . The terms
FX, FY, and FZ are zero. Applied torques TX, TY, and
TZ are given by

TX (1) = vaxAMPX + sin-y
X [—Kg (@ — a) + Dyi]

TY(].) = KTyAMPY — COSvy
X [—Kg (ac — a) + Dgal

Body 1
applied torques
-+ hinge torque

TX@)=0 Body 2
TY (2) = —Ks(ac — @) + Dsax applied torques
TZ(2) =0 + hinge torque

where AMPy, AMPy, and AMP, are the outputs of the
pitch, yaw, and roll switching amplifiers and Krx, Kry,
and Ky are constants of proportionality.
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Coordinate transformation matrices T (m, n, i,{) are de-
fined as follows. The subscript m refers to that body frame
in which a particular coordinate is presently described,
and n refers to the body frame in which the coordinate
is to be described after the transformation. Subscripts i
and j (1=1,2,3 and j = 1,2, 3) refer to the nine elements
of the three-dimensional transformation matrix. Thus, a
vector v, whose components in body 1 are (01, Uy, 0z1),
can be described in body 2 by:

Vpo Vg1
vy > =T1(1,2,4,§) vp
(2% U

where

T(lazai:i) = [B‘U]’ i= 1’2,3
i=1,2,3
For this problem,
cosacOsy  cosasiny  sine
T(1,2,4,1) = —siny cosy 0
—sinacosy -—Sinesiny cosa

and T(2,1,4,§) = T(1,2,},1).

The array T must be defined in the program for every
combination of m and n except m =n, where m (or n)
ranges from 1 to NB.

The angular velocity components, WX, WY, and WZ,
are carried as doubly subscripted arrays in the program
MLTBDY as well as the main calling program. By defi-
nition, WX (3, ) refers to the x;-axis component of body #’s
angular velocity transformed into the body § coordinate
frame. Note that in DSL /90 it will be necessary, if a sub-
scripted variable is to be printed or plotted using the
standard DSL/90 PRINT, PREPAR, and GRAPH state-
ments, to redefine these variables in terms of nonsub-
scripted variables.

WDOT, the output array of MLTRAT, is a double-
precision vector array (single subscript) whose elements



are the body angular acceleration components given in
the following order:

WDOT (1) = iy
WDOT (2) = oy
WDOT (3) = o
WDOT (4) = 6,
WDOT (5) = s

wDOT (N3) = @y (NB)

3. Spacecraft—scan platform simulation program. A
listing of the DSL/90 program used to siraulate platform
scanning effects on a Mariner Mars 1969 type of cruise
attitude control system is given in Appendix B. The entire
program is executed under the NOSORT option, which
is necessary in DSL/90 if subscripted variables are to
appear on the left side of any “equals” sign. The starting
IF statement performs those operations that are only
required once, ie., calling MLTBDY, initializing the
Hamilton-Cayley-Klein (HCK) parameters of body 1
(spacecraft), and finding the sine and cosine of the fixed
angle y (GA).

Sine and cosine of «(AL) are computed next, in the
section of the main program which is executed at every
integration step. The constrained components of platform
angular velocity may now be computed, as in Egs. (66)
and {67), followed by a definition of the subscripted vari-
ables needed by MLTRAT.

Through the use of the HCK package* the inertial Z
(sun line) and X axes are transformed to the spacecraft
body-fixed frame by ITOB. Pitch, yaw, and roll angles
of the craft may be calculated as shown. Body-to-body
coordinate transformations, as developed in Eq. (65), are
then calculated, as well as the hinge angle rate of change
& from Eq. (68).

The next section embodies the attitude control system
dynamics using the SWAMP (switching amplifier with
minimum-on-time) block available on the DSL /90 system
tape. The attitude-control system applied torques are
directly proportional to the switching amplifier outputs.

The commanded hinge angle «,(AQC) is derived using
the Fortran IV AMOD function, a switch, and an inte-

*Kopf, E. H., JPL internal document, Oct. 24, 1966.
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grator. The result is a sawtooth function of time with
maximum and minimum values of +10 and 0 deg respec-
tively and a period of 20 sec. This is obtained by driving
the integrator with a +-1°/sec (+=0.01745 rad/sec) rate a..
Hinge axis torque developed through the spring-damper
system is given next and is added to gas-jet torque for
transmission to MLTRAT.

Remaining are the definitions of the constraint matrix
U and U (UDOT), given in Egs. (69) and (70). The call
to MLTRAT may now be executed, producing WDOT.
Integration of the appropriate WDOT elements results in
the needed angular velocity components of the spacecraft
and platform. Finally, a call to HCK computes the space-
craft HCK parameter rates of change, which are subse-
quently integrated.

System parameters and initial conditions follow in the
listing. Notice that the platform has a mass of 1 slug and
principal moments of inertia of 7., 5., and 10. slug-ft2. The
hinge location is assumed to be 1 ft from the spacecraft
mass center along its x axis and 0.5 ft from the platform
mass center on its —x axis. Angle y = 45 deg (0.7854 rad),
the spacecraft is initially at rest, and the craft is so posi-
tioned that its initial pitch, yaw, and roll angles are slightly
less than the gas jet deadband value of 4.3 mr. The po-
larity of the pitch, yaw, and roll angles at ¢ = 0 are such
that the start-up of platform scanning motion will almost
immediately drive all angles out of the deadband and
turn all jets on.

4. Spacecraft-scan platform simulation results. Fig-
ures 10-16 picture the results of the simulation for a plat-
form sawtooth scanning sequence of 90 sec duration.
Although the responses are largely self-explanatory, note
that pitch and yaw angle responses are quite similar (ex-
cept for opposite polarity) since y was deliberately chosen
(45 deg) to couple scan motion equally into the two axes.
Roll, of course, is only very slightly disturbed by the scan
motion. Scan reversal is clearly visible in the plots of
spacecraft angular velocities, along with gas jet pulsing
by the derived rate feedback. For the simple system pre-
sented here, fuel consumption can easily be obtained by
integrating applied gas jet torque, or equally as straight-
forward would be the description of the platform pointing
vector in inertial space to obtain pointing error. The addi-
tion of a few arithmetic statements (including one inte-
grator) can add a spinning rotor to body 1 for an
examination of the effect of spin-stabilization, still with
basically a two-body system as far as MLTBDY is con-
cerned.
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A listing of the MLTBDY subroutine is given in Appen-
dix C. At present, MLTBDY is limited to five bodies in
the DSL/90 version because of core storage capacity.
This can be increased substantially for Continuous System
Simulation Language (CSSL III) on the Univac 1108, but
the program is probably most practically used with re-
spect to only a few bodies.

B. Subroutine MLTBDL

While the use of MLTBDY is intended to provide an
exact solution for the rotational dynamics of a system of
hinged rigid bodies, no matter how large the relative
angular displacement of adjacent bodies, it was also found
that MLTBDY, in a modified form, could perhaps prove
even more useful and efficient when applied to systems
of rigid bodies when the relative rotations of the bodies
may be assumed to be “small,” say, less than =5 deg. The
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program, called MLTBDL, has been developed in con-
junction with CSSL III and is intended to facilitate the
analytical task involved in such problems as spacecraft
autopilot design and simulation. At present, the program
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is capable of handling systems of up to nine intercon-
nected rigid bodies. The discussion that follows illustrates
the application of the program to the simulation of a
5-body configuration representing a spacecraft bus sym-
metrically hinged to four solar panels.
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1. Spacecraft configuration. Figure 17 shows the struc-
tural configuration under consideration. A right-handed
coordinate frame is fixed in the rigid central body, or
“bus,” and arranged along lines of symmetry of the solar
panel array. Coordinate frames are also fixed to each of
the solar panels and aligned in such a way that the axes
Z3, s, Zs, and z, are all parallel to z; of the bus. Each
of the panel y axes is along the long axis of symmetry.

For this example, it is assumed that relative rocation
between panel and bus is possible only about hinge axes
parallel to the respective panel x axes. However, since the
relative rotations are small, the body-to-body coordinate
transformation matrices are assumed to be constant. Thus,
the body 1 (bus)-to-body 2 (panel) transformation is

Xa 1 0 0 Xy X1
Yo [ == Yy =ty
Zs 0 0 1 Z Z1

and, similarly,

0 1
tis =ty =83y =tss 2| —1 0
0 0 1
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The joints connecting the bus to the four panels are
arbitrarily located in the x,—y, plane, a distance of 3 ft
from the z, axis. In the panel body-fixed frames, each joint
is located —3.25 ft down the associated panel’s y axis.

The inertia matrices of the bus and panels with respect
to their coordinate frames are assumed to be as follows
(Note: by definition, each coordinate frame must have its
origin at the body’s center of mass):

550. 0 0
I, = bus inertia matrix =| 0 552. 0

0 0  800.

slug-ft?

where

m; = 54.3 slugs

m; = m; = m, = m; = 1.55 slugs

Like the subroutine MLTBDY, the modified subroutine
MLTBDL requires the specification not only of the body-

3z

to-body transformation matrices and the location of the
connecting joints in body-fixed coordinates, but also the
direction of certain unknown torques of constraint at each
joint. Since, in this example, the four panel joints are
assumed to be single-degree-of-freedom hinges, there are
two axes at each joint about which the panel is con-
strained against movement relative to the central bus.
While the two axes may be anywhere in the plane per-
pendicular to the hinge axis (e.g., axis %) as long as they
are orthogonal, they are most conveniently taken as the
panel y and z axes, i.e., Yz, 2z, Ys, s, Yz, 24, Ys, and 5. Thus,
there exist, in total, eight unknown torques of constraint
whose direction must be described to MLTBDL in terms
of their unit vector components in each body directly
experiencing their effect.

A matrix U is used by MLTBDL to obtain the necessary
components, where U is composed of submatrices U;, each
of which is a 3 X n, matrix of body i components of con-
straint torque unit vectors for each of the n, total system
constraints. If, for example, the kth constraint does not
apply to body i, since it occurs at a joint not shared by 4,
the kth column of U; has zero elements.

For this problem, U, is given by

0 0 -1 0 0 0 1 O
Uy=|1 0 0 0 -1 0 0 0
0o 1 0 1 0 1 0 1]

where each column contains the body 1 components of
unit vectors along ys, 2, Ys, s, Y, 34, Ys, and zs. The con-
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straint torques are arbitrarily assumed to be positive in 0 0 0
these directions when applied to body 1. For body 2,
U5 = 0 0 _1
o 0 o0 0o o0 o0 o0 o0 o o0 o 0O o O 9 -1

Matrix U is then formed from the U, matrices by

Since constraints 3-8 do not apply to this panel, columns _——
3-8 in U, are zero. Given the body-to-body transforma- _[_]L
tions described earlier and the fact that constraint torques U,

1 and 2 are assumed to be in the direction y, and z, when o
applied to body 1, these torques must be in the opposite U=1"1
direction when applied to body 2, and the unit com- U.

ponents in body 2 are therefore as shown in the first two

(15 X 8)

U
columns of U,. Similarly, [ Us ]
0 0 0 0 0 0] The time derivative U would, of course, be zero if one
U, = 0 -1 0O 0 0 ¢ were to take seriously the assumption that the elements
0O 0 0 -1 0 0 0 0 of U are constant. However, while the expressions for
- - U,, U, Uy, and U; are exact, since the constraints were
i 0O 0 O 0 0 0 assumed to lie along y., z:, Ys, 2s, Ys, 24, Ys, and zs, the
matrix U, elements in reality are trigonometric functions
U, = 0 0 -1 0 0 0 K4
* of the relative angular displacements of the panels and
| 0 0 0 0 0 -1 0 0] bus. That is,
0 0 —cos 8, sin 65 0 0 cos 85 —sin 65
U, =] cosb, —sin 4, 0 0 —cos f, sin 8, 0 0
sin 6, cos 8, sin 4, cos b sin §, cosf, sin 4, cos 05

where 0, 0,, 6., and 65 are panel angular displacements relative to the bus (assumed positive in the %, xs, %, and x;
directions respectively). As a result, in the first approximation,

0 O 0 W3y T Wiy 0 0 0 “‘(ww + wl,,)
U=%al 0 (e O 0 0 owtow 0 0
Woy — Wip O Wzp T Wiy O W4p + Wiy 0 W5y + W1y 0
and

Finally, it is necessary to describe the hinge reaction

r e torque characteristics and the nature of external forces
T and/or torques which might be applied to the system
0 bodies. In this case, a simple spring—damper type of hinge

U=1| o connection is assumed for each panel. Thus, the hinge
T -- restoring torque applied to body 2 will be of the form
0
B 0 _ T, = "sz (az - 01‘) - de (wz:c - wlw) (71)
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where

oz (£) = [ " one (B) At + a3 (0)

0o () == [ wna (8) d + 0,(0)

The relative rotation of the panel with respect to the
bus, 6., is of course identical to a, — 6,. Likewise, the
hinge restoring torques applied to bodies 3, 4, and 5 can
be given by

Tos = —Kyps (a5 — 0y) — dps (030 — 01) (72)
Tw4 = -—Kp4 (a4 + 9,;) - dp4 (1041' + “’ll') (73)
Tos = —Kps (a5 + 8y) — dps (050 + 01y) (74)

Of necessity, then, the reaction torques on body 1 from
hinge rotations will be

Tml = _Tz2 + T:v4 (75)
Ty = —Tos + Tos (76)

As for external forces and torques, these will be limited,
for purposes of illustration, to (1) the application of a con-
stant thrust F, to body 1 along its z axis and (2) the appli-
cation of a variable torque T, () about the body 1 x axis.

2. Subroutine MLTBDL call statements. Access can be
made to MLTBDL by either of two entry points. The first
is through the following call statement:

CALL MLTBDL (NB, N3, NC, BMASS, U, T, IXX,
IYY, 177, IXY, 1XZ, 1IYZ, CIX, CIY, CIZ, FKC)

where
NB = number of rigid bodies in the system
(integer)
N3 = 3 X NB (integer)
NC = number of constraint conditions on
the system (integer)
BMASS = array of rigid body mass values
starting with body 1
IXY, IXZ, IYZ,
IXX, IYY, IZZ = arrays of rigid body inertias starting

with body 1

CIX, CIY, CIZ = array of vector components locating
system connecting joints in each
body-fixed coordinate frame.
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U = array of constraint torque vector
components as defined above

T = array of body-to-body coordinate
transformation matrices

FKC = array of floating point indicators such
that if FKC (i) 5 L., then the value of
WDOT (i) is not requested and will
be set to zero (i = 1,2, - - - ,N3)

The terms NB, N3, and NC must be declared as inte-
gers in the simulation main program. The arguments of
MLTBDL should be dimensioned as follows:

DIMENSION BMASS (NB), IXX (NB), 1ZZ (NB),
FKC (N3), IXY (NB), IXZ (NB), IYZ (NB),
CIX (11 X NB-1), U (N3, NC), T (NB, NB, 3, 3),
CIY (11 X NB-1), CIZ (11 X NB-1)

In CSSL IIT, an ARRAY statement may be used instead
of DIMENSION for all floating point arrays with no more
than three subscripts.

To illustrate, for this 5-body example,

INTEGERS: NB =5, N3 = 15, NC = §

DIMENSIONED VARIABLES: BMASS (5), IXX (5),
IYY (5), IZZ (5), U (15,8), T (5,5,3,3), IXY (5), IXZ (5),
IYZ (5), CIX (54), CIY (54), CIZ (54), FKC (15)

The term T must be defined in the program for every
combination of m and n except m = n, where m (or n)
ranges from 1 to NB. Also, as in ML TBDY, C (i) must be
supplied for all combinations of i and § except for i =j.

{

The execution of the statement CALL MLTBDL (NB,
N3, NC, BMASS, ... initializes the subroutine with the
physical constants of the system and need be done only
once. The subroutine is then ready for repeated computa-
tion of the system angular accelerations. This is accom-
plished with the following statement:

CALL MLTRAT (NB, N3, NC, TX, TY, TZ, FX, FY,
FZ, UD, WX, WY, WZ, WDOT)
where
NB, N3, NC = integers as previously defined

TX, TY, TZ = arrays of torque components applied
to each system body (including torque
about the hinge axis)

FX, FY, FZ = arrays of force components externally
applied to each body
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UD = time derivative of the matrix U

WX, WY, WZ = arrays of body angular velocity
components

WDOT = array of body angular acceleration
components

The arguments of MLLTRAT should be dimensioned in
the main simulation program as follows:

DIMENSION TX (NB), TY (NB), TZ (NB), FX (NB),
FY (NB), FZ (NB), UD (N3, NC), WX (NB),
WY (NB), WZ (NB), WDOT (43)

The angular velocity components WX, WY, and WZ
are carried as doubly subscripted arrays in the subroutine
MLTBDL but are singly subscripted in the main calling
program. By definition, WX (i) refers to the x;-axis com-
ponent of body #’s angular velocity. (Note that in DSL /90
and CSSL III it will be necessary, if a subscripted variable
is to be printed or plotted using the standard OUTPUT,
PRINT, PREPAR, and GRAPH statements, to redefine
these variables in terms of nonsubscripted variables).

WDOT, the output array of MLTRAT, is a vector array
(single subscript) whose elements are the body angular
acceleration components given in the following order:

WDOT (1) = 651
WDOT (2) = 6,
WDOT (3) = 6
WDOT (4) = 4o

WDOT (5) = a2

wDOT (N3) = @y (NB)

3. Attitude dynamics simulation program. A listing of
the CSSL III program used to simulate the vibrations of
the five-body system under the application of certain dis-
turbances is shown in Appendix D. In the interest of
simplicity and brevity, the simulation was not broadened
to include a control system for maintaining the system
attitude. However, it is certainly intended that such a
controller, typically a three-axis gimbaled-engine or jet-
vane autopilot, would be added to the computation as the
usual condition under which ML TBDL is used.

JPL TECHNICAL REPORT 32-1516

After the system variables have been dimensioned and
their types have been specified, parameter values are
input using the CONSTANT or DATA statement. These
include the mass and inertia values, location of the sys-
tem joints, transformation matrix elements, U matrix ele-
ments, and the hinge spring and damper coefficients.

Note that, since FKC (i) = 1. for all i, all WDOT com-
ponents of the system are being requested.

The program’s INITTAL section, in addition to output
formatting instructions, contains the call to MLTBDL
which is executed only at £ = 0 (# = TIME). Thus all the
system constants are transmitted at this point to initialize
the subroutine,

The system differential equations are solved in the pro-
gram’s DYNAMIC section under the NOSORT option.
Nonzero elements of U (UD) are defined in terms of angu-
lar velocity components as derived above. Next, those
panel angular velocity components that are constrained
to body 1 are explicitly expressed in terms of body 1
angular velocity components. (This need not have been
done. These same components could have been obtained
by integrating the appropriate elements of WDOT but
with some added computation time.)

The arrays WX, WY, and WZ are next defined in terms
of their nonsubscripted variable equivalents. Remain-
ing, prior to the call to MLTRAT, are the definitions of
applied forces and torques (including the hinge torques).
Equations (71-76) are embodied in the statements defin-
ing TX (1), TY (1), TX (2), TX (3), TX (4), and TX (5).
Included in TX (1) is the applied torque function TORQ,
which is constructed from three step functions. The
applied thrust FZ (1) = 300. 1b is also inserted here.

A call to MLTRAT returns the desired system angular
accelerations in WDOT, which are then redefined so that
they may be printed using the CSSL IIT OUTPUT state-
ment. Integration of the appropriate WDOT elements
results in the desired “free” components of system angular
velocity, i.e., all three components of body 1 and the body
x components of each panel. The liberty was taken in this
example of integrating the angular velocity components
directly to obtain the inertial angular position of the bus
and panels, since any large rotations of the bus would be
strictly about the x-axis. In general, however, the anticipa-
tion of any large complex motion of the bus in inertial
space would require the use of the four Hamilton-Cayley-
Klein parameters to represent its position. The small rela-
tive angular motion of the panels with respect to the bus

35



would be obtained by integrating the relative angular
velocities, e.g.,

i
g, = [) (20 — w14) dE, ete.

4, Aititude dynamics simulation results. Figures 18-22
show the resulting dynamic response of the system to an
applied thrust of 300 Ib and an applied torque about
body U's x-axis. The torque profile is given in Fig. 18; a
100-ft-1b torque for 2 sec in one direction, 2 sec in the
opposite direction, and then zero. The effect on body I’s
x-component of angular velocity is clear from Fig. 19a,
with coupling from panel vibrations barely visible near
the 4-sec mark. Component oy, in Fig. 19b responds to
panel vibrations induced by the applied thrust. A very
small, second-order type of disturbance is induced into
the system’s z-axis, leaving a constant residual rate.
Figure 20 indicates how panel bodies 2 and 4 are rotated
by the bus through the hinge spring compliance, with
panel bodies 3 and 5 deflecting under 300 1b of thrust.

The bus is caused to rotate approximately 33 deg
(0.585 rad) about x, because of the torque pulse, as shown
in Fig. 21a. Very slight y and z rotations are also induced,
although the z rotation is constantly increasing (nega-
tively). In Figs. 22a and 22¢, panel bodies 2 and 4 rotate
to almost the same inertiai position in x as the bus, the
difference amounting to that caused by the continuously
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Fig. 18. Applied torque vs time
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applied force on body 1. Bodies 3 and 5 are displaced to
a small negative level (about 0.5-0.7 deg) in response to
the linear acceleration of the bus. Figure 23 pictures part
of the program’s printed output.
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To summarize, the system configuration is representa-
tive of a class of spacecraft structures frequently con-
sidered in conjunction with thrust vector control system
design studies and simulations. The 9-body limit of
MLTBDL is convenient at the moment but may be in-
creased without great effort if necessary. The MLTBDL
program listing is given in Appendix E. A further modi-
fied version of MLTBDL is also available which assumes
U =0 and which totally eliminates any second-order
dynamic terms in the equations of the following type:
@ X I+, This latter, fully linearized version, MLTBD
(see Appendix F), can be executed somewhat faster but
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will give less accurate results for the relatively undis-
turbed portions of the system.

Vii. Discussion and Conclusions

The emergence of the barycenter formulaticn derived
by Hooker and Margulies has understandably generated
a good deal of enthusiasm among analysts faced with the
problem of predicting the rotational motions of complex
rigid-body systems. When the approach is applied to sys-
tems of more than two bodies, it is greatly superior to
the Lagrangian formulation. Laborious and error-prone
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differentiations are avoided, as well as the problem of
eliminating unwanted translational coordinates. Also, the
approach of Lagrange, which is carried out without ex-
plicit reference to body-fixed axes, often leaves unclear
how to include the effects of active control laws or inter-
nal torques and forces.

On the other hand, the use of Euler’s equations in the
barycenter approach necessitates the appearance of con-
straint torques that are present at the system’s connecting
joints, These torques never appear in the equations of
motion resulting from the Lagrangian method. However,
Hooker (Ref. 7) has shown how these torques of con-
straint may be eliminated from the equations to reduce
the system to minimal order (i.e., one scalar equation for
each degree of freedom).

The objective of this report has been to describe the
barycenter formulation but, more important, to describe
the use of computational tools that have been developed
to quickly and efficiently apply this systematic approach
to practical problems of attitude dynamics and control.
Specifically, the subroutine MLTBDY was devised to
routinely perform the chore of solving the equations of
motion for the unknown angular accelerations. While the
constraint torques have been algebraically eliminated in
MLTBDY, the subroutine must still deal with a 3n X 3n
system of equations (n = number of bodies) in reaching
a solution. Thus, both the “free” and the constrained com-
ponents of angular acceleration are computed for the user.
While this works some computational disadvantage com-
pared with the minimal order techniques of Hooker
(Ref. 7) or the nested-body approach of Russell (Ref. 8),
MLTBDY is probably simpler for the user to apply, and
a number of analytical preliminaries may be saved to
some advantage.

The philosophy behind the development of the sub-
routine MLTBDY is based on the assumption that the
analyst will employ one of the commonly available, high-
level simulation languages such as DSL/90, CSMP/360,
CSSL III, MIMIC, etc., to compute the dynamic response
of his system. These languages not only provide “integra-
tor blocks” for solving the ordinary differential equations
involved, but they generally supply a variety of special
purpose blocks which simulate devices such as pulse gen-
erators, quantizers, filters, limiters, delays, noise genera-
tors, etc. It is in this spirit that MLTBDY is presented—
as another general-purpose block, albeit on a higher plane
of sophistication, to relieve the analyst of repetitive pro-
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gramming and concern for detail and thereby to free him
for dealing with problems on a more conceptual level.

MLTBDY is probably most practically used for sys-
tems of 2-5 bodies, since the computational problem
quickly gets out of hand as the number of bodies increases.
Often, however, the relative motions of the connected
rigid bodies are small. To accommodate this situation,
two linearized versions of MLTBDY were programmed—
MLTBD and MLTBDL. In these routines, the number
of bodies that can be included is quite large since repeti-
tive matrix equation solutions are not required.
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For the future, some tasks remain which would seem
to offer worthwhile advantages in the solution of such
dynamical systems, One of these might be the develop-
ment of a multi-rigid-body dynamics subroutine capable
of handling, in an efficient computational manner, the
“mixed” case, i.e., one in which a few rigid bodies in a
system undergo large relative rotations and the rest ex-
perience small relative rotations. Also of some interest
would be the development of a general-purpose program
to allow the representation of a system of connected rigid
bodies and flexible appendages as well, combining the
barycenter formulation with modal models of the flexi-
ble parts.
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Vector identity Proof

The following proof is given for rearranging the se-
quence of successive vector cross products without chang-
ing the value of the vector result. The identity proves
useful in the derivations of Sections II and III.

Show that

eX[oX(0Xe)]=—oX][cX(ecXw)]

If one uses the identity (Ref. 9)
aX((bXd)=(a*d)b—(a°b)d

then Eq. (A-1) becomes

eX[(@ee)o—¢c] = —wX[(c-®)c— ]

44

(A-D)

(A-2)

Since
e X (—ec) =0,
Then Eq. (A-2) is
e X [(w:c)w] = —w[X(c:w)c]

woXww=0

Also, since
®we¢c=c-o =k = constant
and
e X ko= —w X ke
then Eq. (A-3) becomes
eXko=k Xo

and the identity is proved.

(A-3)
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TITLE 3-AXIS GAS—JET CONTROLLED SPACECRAFT AND SCANNING PLATFORM
L3

INTGER NCyNBsN3;3I,JsKsL
k-3

STORAG IXX(2),IYY(2),1ZZ42),IXY{2),IXZ(2),1Y2{2} -
STORAG BMASS{2),LIX{22) L IY(22),L12(22)
STORAG PHIZ(2) s THETZ(2),PSIZ(2}

DOUBLE PRECISION WDOT(19)

DIMENSION WX(252) sWY{2:2)sWZ(2,2),TEX(2),TEY{(2),TEZ{2),THX{2)s

2 Z2 20002 O®

o ATHY(2) g THZ(2) s . Plos2) s PZI2),PAL2),PBL2),PCI2),T712:29353)5
2 PD(6:2) s FX{2)sFY(2),FZ(2)
OSGRT - I
IF(TIME.GT.0.) GO TO 100 S
* NN - ey I e A £ AES Lt L e A it A S ST % % ok e L e - i Aub s S LA AL 4 et 3 S P4 7 4 B i i, ST A A 3 e R B 8 - S -
#  INITIALIZE MULTI-RIGIC-BODY DYNAMICS SUBROUTINE (MLTBDY)
#
"CALLMLTBDY(NBsN3,NCyBMASS s IXX, IYY 122 IXYo EXZoIYZLIX,LIY,LIZ)
*
# INITIALIZE HCK PARAMETERS o T
L S
PZ1IC,PALIC,PBLlIC,PCIIC = INITZ(PHIZ(1)sTHETZ(1),PSIZ{1})
’ R RO - .- - —
#  SINE AND COSINE OF GAMMA
*, v e — e i e S p— . —_— e
SG = SIN(GA)
€6 = COS(GA) o o e
100 T CONTINUE
*
» SINE AND COSINE OF ALPHA . ’
k-3
SA = SIN(AL) )
#
* _ CONSTRAINED COMPONENTS OF ANGULAR VELOCITY
:
H2X = CA%{CG#W1X + SG#W1lY) + SA=WiZ =
W2Z = -SA#(CG#W1X + SG*W1Y) + CA#W1Z
*
# REDEFINE SUBSCRIPTED VARIABLES
3
CHX(ly1l) = W1X - i . " '
_WY(ls1) = WiY , .
WZ(1s1) = W1Z
CMX(292) = W2X
WY(252) = W2Y
o WZ(242) = W2Z ) R
PZ(1) = PI1
CPA(1) = PAl o ) o
PB(1) = PB1
PCLl) = PC1 R
*
* FIND BODY 1 COMPONENTS OF SUN LINE AND CAMOPUS DIRECTION
%
D1+D2 = MATRIX{PZ1,PAl:PBl,PCl) ) e

NX1sNY1sNZL = ITOB{(0.30051.301,D2)
oA XLlebYlsLZ1 = ITOB(1le30090.35D01,D2)
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# BODY 1 PITCHs YAW,; AND ROLL ANGLES

THETP = ATAN2(NY1sNZl)
THETY = ATAN2{(-NX1,NZi)}
THETR = ATAN2(-LY1,LX1}

#

COORDINATE TRANSFORMATION MATRICES

T(ls251,:1) = CA=CG
T(1:25152) = CA=SG
T(l;251,:3) = SA
T(1:2+251) = =SG
T{1:2:252) = CG
T{142352+3) = 0.
T{1:25351) = -SA#CG
T{ls253,2) = -SAxSG
T(1122313) = CA

DO 105 1=1,3
DO 105 Jd=1,:3
105 T 2s1s1:d) = T(1259:1)

# HINGE ANGLE,ALPHA,RATE OF CHANGE
#
ALDDT = -W2Y - (W1X#SG - W1Y#(CG)
%
® ATTITUDE CONTROL SYSTEM
#
XSNS = THETP
_YSNS = THETY
ZSNS = INTGRL(.0042990, {THETR-ZSNS}/TRS)
XIN = 1000.#(-XSNS-TGX#W1X) - XDER
YIN = 1000,%#{(-YSNS-TGY#W1lY) - YDER
ZIN = 1000.#(-IZSNS~-TGZ=W1Z) ~ ZIDER
AMPX = SWAMP(l,DBXyMOT,XIN)
AMPY = SWAMP(2,DBY,MOT,YIN)
AMPZ = SWAMP(3,DBZ,MOTsZIN)
TDRX = FOCNSW{AMPX,TCXsTDX,TCX)
TORY = FCNSW(AMPY,TCY,TDY,TCY)
TDRZ = FCNSW(AMPZ,TCZ,TDZ,TCZ)
XDER = INTGRL{O.s (KDX#*AMPX-XDER)/TDRX)
YDER = INTGRL(Q.,; (KDY#AMPY~YDER)}/TDRY)
IDER = INTGRL(O.; {KDZ=AMPZ~ZDER)/TDRZ)

®

EXTERNAL TORQUES (GAS JET)

EXT1
EYT1
EZT
TEX(1)
TEY(1)
TEZ (1)

KTX#AMPX
KTY#AMPY
KTZ#AMPZ
EXT1
EYT1
EZT1

[ ]

& COMMANDED HINGE ANGLE,ALPHAC,;DRIVE FUNCTION

ZONK = AMOD(TIME,;20.)

ACR = .01745
IF{ZONK.GE.10.) ACR=-,01745
AC = INTGRL{O.;ACR)
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* HINGE + EXTERNAL TORQUE COMPONENTS

THY(2) = —-KS#{AC-AL) + DS=#ALDOT

THX{1) = =T{2:14+1,2)2THY(2) + TEX(1)
THY(1l) = -T¥{251:2,2)%THY(2) + TEY(1)
THZ{Ll) = ~T(25;1,3,2)#THY(2) + TEZ(1)

%

CONSTRAINT MATRIX

P(1s1) = CG
PL2,;1) = SG
P{352) = 1.
Pla,1) = -CA
Pla4,2) = -SA
P(&:1) = SA
Pl6,2) = -CA

PD(4,1)=ALDOT*SA
PD(432)=—ALDOT*CA
PD(651)=-PD(4,2)
PD(6,2)=PD{4,1)

# BODY ANGULAR ACCELERATION SOLUTION

CALL MLTRAT(NB ;N3 NCoTHXsTHY THZ FXsFYFZPyPDs T WX, WY WZ,WDO0T)

# BODY ANGULAR VgULOCITY COMPUTATION
#*

WiX = INTGRLIWIXIC,WDCT{(1}))

WLY = INTGRL(WLIYIC,WDCT(2))

W1lZ = INTGRL(WIZIC,WDOT(3)}

W2Y = INTGRL(WZYIC,WDOTI(5))

*
x
ot
<
3]
m

ANGLE CALCULATICON
AL = INTGRL{ALIC,ALDOT)
# HCK PARAMETER RATES

PZ1DOT,PALDOT,PBI1DOT,PCLDOT = HCK(PZ1,PAl,PBl,PClsWIX,W1Y,W1Z)

» HCK PARAMETER CALCULATION
-4
PZ1 = INTGRL(PZiIC,PZ1DOT)
PAl = INTGRL(PALIC,PALDOT)
PB1 = INTGRL(PBLIC.PBLDOT)
PCL = INTGRL(PCLIC,PC1DOT)
#*
# BODY CONSTANTS

PARAM NC=2,NB=2,N3=6

TABLE BMASS(1-2) = 24,051.0
TABLE IXX(1-2) 1109704, 1YY(1-2) = 140.35.0,122(1~2)
TABLE IxXxY{1-2) ~1:.6990.9 IXZ(1-2) = .31:0.¢ IYZ{1-2)
TABLE LIX(12) I.oLIX(21) -5
TABLE LIY(12) O.oLIY{21) 0.
TABLE LIZ(12) O.sbLIZ{21) 0.
PARAM KS=1000.:D5=200.

# ATTITUDE CONTROL PARAMETERS
PARAM KDX 3.6, KDY 43.56y KOZ
PARAM TCX 10.0, TCY 10,0, TCL
PARAM DBX 4+30; DBY 4,30, DBZ

0w
non

185. "10:
3.2440.

0wonou
wou o

it ou
nonn
Hounoh
ENFNS
: O

we @
[ e S
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PARAM TDX = 20.05 TDY = 20.05 TDZ = 21.2
PARAM MOT = .020s TRS = .5
PARAM KTX = 0495, KTY = .063s KTZ = .08325

PARAM TGX=06.3TGY=0.3TGZ=0,

# INITIAL ANGULAR VELOCITY COMPONENTS

INCON WIXIC = 0.9 WIYIC = Qey W1ZIC = O

INCON W2YIC = 0.

* INITIAL EULER ANGLES OF BODY 1 -

TABLE PHIZ(1)=-.780T7T1,THETZ{1)=-,0060,PSIZ(1)=.78500

PARAM GA=.7853982

INCON ALIC=0.

INTEG MILNE ) o L

RELERR AC=1.E-53XDER=1:E~53YDER=1.E-53ZDER=1.E~S4AL=1.E~5;H1X=1.E~7

CONTRL DELT=.1lsFINTIM=90,,CLKTIM=1800.

PRINT loesWlXoWlY W2 ZoW2X o W2YsW2Zs AL, THETP,THETY s THETR:AMPX;AMPY ;AMPZ 000
XDERSYDERSZDER g XSNS s YSNS s ZSNS EXTIEVTLI EZTY o XINs YINSZINs TDRX500 0
TDRYTDRZACHDELT

PREPAR o1 s THETP,THETY  THETR yWIXsHW1YsW1lZsALoACs XDERs YDERyZDERyEXTL 500 e
EYTL,ELT1

GRAPH o, TIME,THETP

GRAPH 3, TIME,THETY

GRAPH o4TIME,THETR

GRAPH ;,TIME,W1X

GRAPH 43 TIME,W1lY

GRAPH 5,TIME,W1Z

GRAPH ;s TIME, AL

GRAPH 3, TIME,AC

GRAPH 3, TIMEL,EXT1

GRAPH 4, TIMESEYT1

GRAPH 53 TIMELEZT]

GRAPH ¢, TIME; XDER

GRAPH 43, TIME,YDER

GRAPH 53 TIME,ZDER

GRAPH 4, THETP,HW1X

GRAPH s THETY W1lY

GRAPH 33 THETR,W1Z

END

STOP
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SUBROUTINE MLTBDY(NBsN3;NCoMBy IXXsIYY o IZZ5 IXY o IXZ,IYZLIX,LIY,LIZ)

ADJUSTABLE DIMENSIONS

[N el el

DIMENSION MBOL) o IXXCL), IVYLL)} L IZZ2(1) IXYLL) IXZLL)IVYZ(1),
1 LIX{Y),LIY(1),LIZ{1),TM(])

ADDITIONAL DIMENSIONED VARIABLES

SO0

DOUBLE PRECISION A{19,19), BMASS{5)

DOUBLE PRECISION DET1,DET2

. DOUBLE PRECISICON PTAP(B;8):8B(8)

DOUBLE PRECISION B8(19,9)

DIMENSION PDTW(B}),PTAE(S8)

DIMENSION C{(3:3:5)sDX{5:5:5):0Y¥(5:555), DFX(5),DFY(5)
1sD0Z2(5:545), LXU{5,5)2LY(555)5LZ{5:5),AP{15:15),

2 CPXIS)Y;CPY(5),CPLIS) ;WDX{5,5)sWDY(545),
AWNDZ(555) 4 WHDX(535) s WHDY(595) s WHWODZ(5,5) s DWNDX(5:5) sDWWDY(5,5])
GDWWDZ(5,5) HX{5) HY(5),HZ(E),

6 DFZ(5)sFEX{5:5)sFEY(545),FEZ(5:5)
REAL LXyLY o LZoMBoIXXs IYYQIZZ 3 IXY s IXZIYZ o LIXeLIY4LIZ

INITIAL CALCULATION OF BARYCENTER VECTORS W.R.T. BODY C.GsS
AND HINGE POINTS

OO0

NB3 = N3
NCl = NC + 1
TM{L) = 0.
DO 5 J=1,NB
BMASS(J) = MB(J)

5 TM(1) = TM(1) + MB(J)
DO 14 I=1,NB
DO 14 J=1,NB
IF(I.EQ.J) GO TO 16
K = 10%1 + J

uou

LX{I4J) = LIX{K}
LY(IsJ) = LIY(K)
LZETIsd) = LIZ(K])
GO TO 14

16 LX(Isd) = 0»
LY(I’J) = 0.
LZ(I,J) = 0,

14 CONTINUE
DO 13 N=1,NB
DO 13 J=1,NB

DX(NsJdsN) = LX(N,J)

DY(NsJsN) = LY(NyJ)

DZANsJoN) = LZ{Ns;J}

DO 13 K=1,NB

DX{NsJsN) = DX(NgpJsN) = (BMASS{K)}/TM(1))#LX(N:K)
DY(NyJsN) = DY{NyJaN) = (BMASS(K)I/TM{L))#LY(N,K)

3 DZ{NsJyN) DZ{NyJsN}) - (BMASS(KI/TM(L1)I=#LZ{NsK)

 CALCULATION OF AUGMENTED INERTIA DYADICS FOR EACH BODY

OO

DO 31 N=1;NB

CllslaN) = IXXIN}
Cll:2sN) ==IXY(N)}
Cl1ls3,N) =~IXZ(N)
Cl2:23N) = IYYIN)
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Ci2434N) ==~IYZIN}

_ Ci3s3,N) = TZZANY
DO 30 J4=1,NB

. Ci{lslsN} = C{ls1oN) +BMASS{J)={DY{NoJoNI#®2 + DZ(NyJsN)#=2)
Cllq,2sN) = C{1ls2sN} ~BMASS{J}=DX{NsJsNI=DY{NsJ N}

C{1l33sN}) = C{1,3sN} ~BMASS{J)aDX{NyJsN)eDZ{N,JsN)}
C{232yN) = C{2;2sN} +BMASS{J)5{DX{NzJsN})222 + DZ{NsJsN)=#=2)
Cl2s34N) = C{253s;N} —BMASS{J)=DY{N,JoN}#DZ(N,JsN)

30 Ci3s3sN) = C(3,:3,N} +BMASS(J})#(DX{NsJsN)222 4+ DYI{NsJdsN}ne2)
C{251sN) = C{1,2-N} o _ = o
C‘3119N) = C(1937N)

31 Cl322sN). = C{2:33N)}

RETURN

ENTRY MLTRAT(NB;N3yNCoTXoTYsTZFXqFYoFZPyPD, ToWXsHYsWZHE)

DIMENSION FX{1)sFY{1)sFZI{1l) T{NBsNBy3,3) s TX{L),TY{L)TZ(1),
WX{NBsNB) s HY{NB;NB)sWZ{NB,NB)

o s

s PIN3,NC)sPD{N3,NC)
DOUBLE PRECISION Ef19,1)

_{A) MATRIX CONSTANT ELEMENTS _

ks

DO 32 N=1,NB

DO 32 I=1.3
DO_32 J4=1,3

K = 3#{N-1) + 1
L= 3#(N-1) + J
2 A(KaL) = C(IQJ’N)

 EXTERNAL FORCES

OO0 W

DO 33 J=1,NB
FEX{JsJd) = EX(J) .
FEY{Jsd) = FY(J)

3. FEZ(J,d) = FZ(J)

_..BODY=TO-BOOY COOQRDINATE TRANSFORMATIONS OF ANGULAR
VELOCITY VECTORS
_BODY-TO-BODY COORDINATE TRANSFORMATIONS OF =
EXTERNAL FORCE VECTORS
BODY-TO-BODY COORDINATE TRANSFORMATIONS OF BARYCENTER- =
~TO-HINGE VECTORS

booconnonw

§
E
i

DO 17 I=1,NB
DO 17 J=1:NB
IF(I.EQ.Jd) GO TO 25
WX(Iod)=TlIsdol o l)oWX{IT)eT (19132 2RY{1,I1)4T{T,J91,3)2WZ {11}
WY (T 9d)=T{I1Je29 1) #WX T 4T {1592+ 2)8WY (L, 1)4T{1;J,5253)2WZ{1,1)
‘_»NZ(I;J)'T(I;J;Bgl)*HX(IgI)+T111J9312)*HY(111)+T(Ild 3,3)#WZLI,1)
FEX{I,d) = T(IJslsl)sFEX{I,I1)4T{Is3,102)#FEY(T,10+T{1,Js1:3)=FEZ(
11,1}
FEY(I:J) = T(I,JsZ:l)*FEX(Isl)+T(I9J329Z)*FEY(13 (J+T{1sJ,2:3)FEZI
C1i.1) _ L S
FEZ(I,Jd) = TUIgJe3s 1) #FEX(I 1) #T(1,J93,2)8FEY{1,1)0+T(15J53,3)4FEZ{
11,1}
25 CUNTHNUE
DO 17 K=1.NB
IF{I.EQ.J) GO TO 17
IF(1.EQ.K)} GO TO 17 )
DXET2dsK)=T{IoKelol)#DX{EoJel)+T{1sKs1,2)2DY{15d51)
1o T Ke193) 2Dl ,ds1)
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DY {1 oJdoKi=T{I  Ka2¢1)2DX T 1) +T1I:Ks2:232DYiLod51)

i +T{1,Ke2:3)eDZ{1,d51) o
DZ(IvJyK) T(IrK9391)*DX(IvaI’#T(IgK;3gZ)*DY(IsJyE)
i +T{IsKs3,3)8DZ{12d51)

7 CONTINUE

VECTOR CROSS PRODUCTS DESCRIBING SYSTEM ROTATIONAL COUPLING.
{QUADRATIC TERMS INVOLVING THE CONNECTING BODY ANGULAR

VELOCITIES AND THE MUTUAL BARYCENTER~HINGE VECTORS}

YOO

DO 23 N=1,N8B
_Lpxim O.
CPY{N} 0,
_.CPZIN) = 0.
DO 23 L=1,NB
CIFIN.EQ.L) GO TO 23 . L
WOX(LsN) = WY({LsN)#DZ{LyNsN) - WZILyN}#DY{LsN,N}
WOY{LaN) = WZ{LoN}=DX{LaNsN) ~ WX{LoN)=#DZ{L,NyN)
WOZ{L,N} = WX{L;N}#DY{LoNsN} - WY{L,N}«DX{L,NsN)

“ 4 H

. HWOX{L N} = TMLL1)# (WY (Lo NI#WDZILsN) ~ WZ{L NI=WDY{LoN}} + FEX{L,N])
WWDY{LsN) = TMIL)2(WZ{L,N)#WDX(LsN) = WX{L N}#WDZILsN)}) + FEY{L N}
WWDZ(LyN) = TM{1)#(WX(L,N)#WDY{LoN) =~ WY(L,N)#WDX(L,N)) + FEZ(L,N}
DHWDX(LsN) = DY{Ns;LoN}=#WWDZ{LsN} ~ DZ{N;LsN)=UWDY{L N}

DWWDY(L,N) = DZINSL N)#WWDX(LsN) — DX{NyL N)eWWDZIL,N)
DWWDZ{LsN) = DX{NsLoN)#WWOY{L,N) - DY{NsL ,NI#WWDX{L,N)

CPX(N) = CPXI{N) + DWWOX(LoN)
CPY{N) = CPYI{N) + DWHWDY{LsN)
CPZIN} = CPZIN) + DWWDZ{L N)

23 CONTINUE
DO 27 N=1,NB

DFX(N) DY(NsNsNY2FEZ(N,N}) = DZ(N,N,N)#FEY(N,N)
DFY (N} DZ(NyNyNI#FEX(NyN) = DX{NyN,NI#FEZ{N,N)

 DFZ{N) DX{NsN,N)2FEY{NsN) -~ DY{N;NsN)=FEX{N,N)

i

{A) MATRIX TIME VARYING ELEMENT COMPUTATION {TRANSFORMED TO
_ PROVIDE PROPER BQODY-N COORDINATES WHEN MULTIPLIED

BY ANGULAR VELOCITY VECTORS OF BODIES-K
_IN K _COORDINATES--N NOT EQUAL TO K)

OO Oa0O0N

DO 210 N=1,NB
DO 210 L=1,NB
LIF(N.GE.L) GO T0 210 .
K = 3=(N-1)
LL = 3={L-1)

AP(K+1,LL41) = <TM{1)#{DY{L,NyNI8DY{NsL N} + DZ{LyNsNI#DZ{N,LyN})
CAP(K+1,LL42) = TM{1)#*DX{LsNyN)#DY{NsL,N) o
AP(K+1,LL#3) = TM(1)#DX{L,Ns;N}*DZ{NsL,N)
_ AP(K#2,LL+1) = TM{1)*DY{(L,N,N}=DX{N,L,N)
AP(K+25LL#2) = =TM{1)#(DX({LsNyNI#DX(NyLsN} + DZ(LsNsNI*DZ{N,LyNJ ]
AP{K+2,LL+3) = TMIL1)#DY{L N, N)#DZ{NsL,N} =
AP(K+3,LL+1) = TM(1)*DZ(L,NsN)=DX{NsL,N)
AP(K+3,LL42) = TM(1)#*DZ({LsN,N)#DY(NsLsN)

AP (K+3,LL+3)
DO 21 I=1,3
DO 21 J=1,3
KK = K + 1

~TM{1) #{DX{LsNsN)#DXI{NsLoN) + DY(L,NsN)=DY(N,L,N})

_AUKKsNN) = AP(KK,LL#1)#T{LsNyLlsd) + AP(KKsLL#2)#T{LoNs254)
1 ‘?‘AP(KKgLL*B)*T(LaNsasJP
CAUNNRKK) = A(KKpNNY
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21
210

2%

302

CONTINUE
CONTINUE N

ANGULAR MOMENTUM VECTOR COMPONENTS FOR BODY N

DO 22 N=1,NB

CHZANDY,

.D0 24 N=1,NB

_E(K+3,1) :
1 + CPZ(N) * DFZ(N)
v e 30. 300 N=1,NB3
300

DO 302 N=1,NC_

K3 = 32N

K2 = K3~1

Kl = K3-2

HX{N) A{KLsKLI#WXIN;N}+AIKLI s K2I#WY{N,N}+A(KL,K3)#WZ{Ny;NJ}

HY (N) A(K2,KL) #WX{NyN)+A(K2,K2)#HY (NyNI+ALK2,K3 )2 HZ{NyN)
ALK3 K1) #WXIN,N)+A(K3,K2)#WY [Ny NI FA(K3,K3)#WZ(N,N)

B |

~ {E) VECTOR ELEMENT CALCULATION

K = 3#{N-1)
E(K+1l,1) HY (N} #HZ(NsN) = HZIN)=WY{N,N} + TX(N)
CPX{N) #+ DFX{N)
HZ{N)#WX{N,N) - HX(N)*NZ(N,N) + TY{N)
CPY(N} + DFY(N)

CHXUN)#WY(N,N) = HY{N)®WXINsN)} + TZ(N)

E(K+2,1)

ll+"+l0

= E{Nyl)

B(Ns1)

DO 302 J=1,4NB3
B{JsN+1) = P{J,N}

CALL MATINV(A,19,NB3,8,NC1,DET1)
DO 400 J=1,NC

400

401

403

402

404
12

54

..DO 401 K=1,NC
— PTAP(J,K) = 0.
_PTAP(J,4K) =
PDTWLJ) = 0.

L POTWAS) |

. DO 404 J=1,NB3

PTAE(J) = O.
DO 400 I1=1,NB3_ _
PTAE(J) =

PTAE(J) + BUI,1)*P(I,d4)

DO 401 J=1,NC

DO 401 I=1,NB3
PTAP{J9K) + PlIyJ)®B{TI,K+1)
DO 403 J=1,sNC

DO 403 I=1,NB

PDTHI(J) + PD{3#1-2,J)sWX{I,1)
PDTH(J) = PDTW(J) + PD(3%I~-15J)#NWY([,1)
PDTW(J) = PDTW(J) + PO(3sT,J)#WZ(I,1)
DO 402 I=1,NC

BB{I) = PTAE(I) + PDTW(I)

CALL MATINV(PTAP,;8,NC+BBy1,DET2)

unun

Eldsl) = BlJs1)

. DO_404 I=1,NC_

E(Js1) = E{Js1l) - BUJ,I+1)#BB(1)
CONTINUE

RETURN
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PROGRAM SPACECRAFT APPENDAGE VIBRATIONS TEST
INTEGER NBaM3snNC
DIMENSION T{5+5s3s3}
e _ARRAY BMASSI53 o IXML5) e IYYL{D) e I27{5) s IXY {5 »IXNZ(B)TYZ£{5}
ARRAY WDOTIL3 ePDEL5eBYeTX{SeTY(S)eTZE{5)eMX(S) WY (S)eHZEE)
ARRAY FHIS)aFYIS)1oF 248 eFXKCL183al INXIS8Y21 I¥Y 165t I17(55)2PL15:8)

CONSTANT NB=5e¢N3=-15+NC=B
COMSTANT TFINAL = i0.
CONSTANT FKCTi5=1l,
CONSTANT BMASST58.394%1.559 IXX=550.94%5,759sIY¥Y=552.38%2,020na
127-800c o437, 8eIXY25#%0.9IX22520.91¥2=52C.
DATA L IX413)/=-3 /1 TXI19Y /371 1Y 4123732 1Y 430y /7~-3./
DATA LIYE213/-3.25/L T¥ 1313/ -3.25/L IV QL) /-3.25/LX¥ 51/ -3.25/
_______ DATA LIY(233/~-3.25/01Y424)/~3.25/11Y425)/~3.25/1.1%432)/~-3.25/
DATA LIYE34)/-3.25/LIY035)/~3.25/L 1Y t82)/~3.25/L1Y¢u3)/-3.25¢
DATA | TY{45)/-3,25/)1 IY{523/-3.25/1 1V{53)/-3.2521 IY(54)1/~-3.25/
DATA Tile2sleld/ e/Tlle2e2e2)/te/Tlledo3s3)/tel
o DATA T(10390 023/ 774103620103/ =30/Ti123232307101
DATA Tllebeleld/—1a/T(lole2e¢2)f/~1a/T(Lello3ei3dilas
e DATA T{1959)02)7=1./T{10%e2013/71./T1{19393:30/1.7
DATA Tl2¢3e)e23/1/Ti22302et)/-1a/T82e353e3)/1/
DATA Ti{29890013/-1a/T129%0292)/~1,/T429893933/1 s
DATA Te2+¢55le2)/~1a/T(2¢592e2 )}/ a/T{2e59¢3e3)¥/1/
DATA T{3282102)/3a/Ti30U0201) = ol T{30ta3s337101
DATA Ti3e¢5eleld/~1a/f/Tt308e2e2)/-2u/T{3e5¢3e3341./
DATA T{49521923 /17T 8e502e1)7/~1./TlUe5933)7 .7
DATA P{le3)/-1/PileT)/ /P (2e¢l}3/1a/Pl2e5)/-1s /P(392)/1 /
e DATA P{3o43/1./P{3s63/1./P{3s83/1/7P15510/~)./P{6s2) =1,/
DATA PEBe3l/=1e/Pi8e8)/~1/PCLlEeB2/~1o/P(12eB)/=La/PlLlUel/-Last
e DATA P{15s8)/~1.7
CONSTANT DP2=}15.DP3-100.¢0P8=80.+0P5=50.
e CONSTANT XP2=4000.24AP3=3000.sKP4=25%560.¢KP522000, —
CONSTANT CLKTIMZ120.
INITIAL e e I
PAGE EJECT $ TITLE SPACECRAFT AND 4-PANEL SGLAR ARRAY.sa
- AT BRATIONS TEST § PAGE SKIPa % & ITITLE 300Y 1 - SPACECRAFTaas
BUS $ TITLE BODY 2 -~ SOLAR PANEL % TITLE B0DY 3 - SOLARses
PANEL $ TITIE B0DY & - SOLAR PANEL 3 VITLE BODY S -~ SOLAR.sw
PANEL & PAGE SKIP.4 $ TITLE INERTIAS ¢ PAGE SKIPeZ2 $ TITLEwee
IXXoIYYeIZ2Z20IXYeIXZ29IYZ % PAGE SKIPs2 3 TITLE BODY 1 % PAGE.»o»
SKIPel & OQUT IXXCL) eI VY¥IL)eIZ2ZCL)sIXYCY ) oIXZCR)oI¥2Z4L)
e PAGE _SKIP21 . % JITLE BODIES 2-5 % PAGE SKIP2l % 0UT IXX{2deaan.
IVYE2YelZZ€2 o XXY (23 IXZ02)eIYZ(2)} S PAGE SKIPob4 § TFITLE ceae
MASSES ¢ PAGE SKIPs2 % TITLE M1oM2oM3sMU4sM5 % PAGE SKIPe2
OUT BMASSE{L}+BMASSI{2YBMASS{3)BMASS(8) «BMASSES)
PAGE EJECT $ TITLE PANEL HINGE SPRING AND DAMPER CONSTANTS
PAGE SKIPs«2 % TITLE KP2:KP3+KPUesKPS & PAGE SKIPeZ & OUT cew
KP2:KP 3o KPR o KPS & PAGE SKIPsl@ § TITLE DP2:0P3:DPUsBPS
PAGE SKIPeZ % OQUT DP2:0P3+DP4+DP5 & PAGE EJECT
CALY ML 7801 (NBoNIsNCsBMASSoPsTo IXXs IVY 51225 IXY s IXZoIV2 oLl IX3L IV 0 0nw
LIZe«FKC)

END

DYNAMIC
IF{TIME.SE-TFINALY 50 7O S1
DERIVATIVE VIB
VARIABLE TIMEZD.O
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CINTERVAL LI=.05
ALGORITHM ITAL=B8+JALZ=B
STPLLK CIKTIiM e e e e e e e
QUTPUT ZsRIXDeWIV¥DeUWEZDoW2UD M 3XDeW A DoKW OXDoWEN oIV elLlZok2Xt o ue
TORQ e U3 No WU s WX e THX s THY s THZ» 820 A39 Al o ADoW2Y o W27 s W3Yo W 329 0ne
HUY s 42 oM 2Y¥D e H2ZD e M3YD oW 3IZD o HUYD o HUZD o WEYD e lSZDeWEY e KEZ
e PREPAR MHIXokilYoWlZ7eW2 o bl3X o W8 X o MO o THY aTHY e THZ 9 822 A30 Al ASsM2Y 9 coa.
W2ZaW3Y el3Z e HUY e WUZ eWEY e W5ZTORA
NOSORT . . e e e e e _
INTEGER NBeN3 eNC
.. PD{lefB)-H3IX-MIY e
PDEL83--KOX-HI1Y
PR{2:2)s=u2 sl X . I
PDE2+bFHUN+WIN
PR{Zo 1} W2X-MYX e, I N I
PD¢3e3W3IX-W1Y
. PD{3s5)zWU8X+WIX —
PD(3+7)-WbX2R1Y
M2Y = M1V

W2Z = WlZ
H3Y = -4i1X
W3Z = uWlZ
Wby = ~4lY e
W8Z = WiZ
M5Y = WlX R
WS5Z = WiZ
MYX{1izuix
: WYEL¥SHLY
. MZ{13zWY7
HX{2)TKZX
MYL23 = w2y .

W22y = W2Z
WX{33=uwi3ix
WY{3) = W3Y
W2{3) = W37
WX (U yZHuY
~WMY{BY = WY
WZ{4} = Wuz
L HXI53SH5X —
WYES5)r = WSY
WZ4{5) = W52

TX{L)ZKP2#(AZ-THX Y +DP 2 (W2X-WLX) - KPU* (AG+THX}I-DPU (WUX+W1X])
IY{12SKP32{AZ-THYI+OP3 4 {W3IX~WIY) ~ KPS%x{AS+THY)-DPS+{USX+WlY})

TX(2)=-KP2=(A2-THX)-DPZ=x{HZ2X-WIX)

- TX{33=-KP3+{A3-THYI-DP3I={H3X~-W1Y)
TX¢UIZ—KPUx{AG+THXI-DPUs(WUX+HIX)
e IXUB)=-KPS# A5 THY)-OPS5+{W5X+u 1Y)
FORG@L = 100.*STEP(B.+TIME)
TORQ2 = -200:,#STEP{2.9TIMED
TORQ3 = 10C.*STEP{4, +TIME}

JORQ = JORQI+TORBZ+TORAZ

TXELY = TXU(L) + TORG
F7413=300.

CALL MLTRATI(NBsNIeNC eTXeTYoeTZeFXeFYeFZePDollei¥elWZeWDOT)
WIXD=WDOTI1)

WiYD -wDOT(2})
WiZ0-WDOT{3) e e e - e e e ——
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W2HD=WDOT{#)

W2¥D = wDOTF(5}
W2ZD = WDOT{6}

M3¥D = dDOTIL8)

W3X0zwhoT( T}

W3Z0O = wDOT{9)
MUYD=WNOT(10}

W8YD = wDOT(IL)
W420 = WwDOT(12)

WEXDZHWDOT (13
WSYD = WOOT(14)

W5ZD = WDOT{1i5}

—  WIXCINTEGIMOOT(120.)

e MAZZTINTESL{WOOT (3303

WIYZSINTEGEWDOTI2)+0. )

W2XZINTEG(MDOT(H) +0a}
WIXZINTEG(WROT{7)s0a)

— WOSXTINTEG{WDOT(L3)e0a)

WUXZINTES(WDOTELIC) o006 )

THX=INTEG WX +0.)
THYSINTEG{WiY20a)

THZZINTEGS(W1Z+0e}
A2-INTEG{W2X 90}

A3SINTEG{W3Xe04)
AY=INTEG (WYX 00,

ASZINTEG{WS5XeO.)
END

END

END

TERMINAL
Slae  CONTINUE

END
_END
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i# SUBROUTINE MLYBDLI(NBeN3IsNCeMBePoTeldXeIVYeIZZeIXYelXZoIVZelIXel 1Y

2% 1 LIZ=sFKC)
3% c
L3 c ADJUSTABLE DIMENSIONS
S o
b= DIMENSION MBEL)eIXX(L)o IYYIL) o IZZAL) o IXY LYo INZ( LI IYZ UL LIXI1)}s
= i LIYER el TZ8 1 e TMELYeFKC {1 oPI{NIoNC) o T(NBsNBs323)
8% C
9% c ADDITIONAL DIMENSIONED VARIABLES
i0= c
il= DIMENSION Q{27271 AP (27227
12 " DOUBLE PRECISION Af43:83).B(63e%}WRK{200}
13= DIMENSION BMASS{3)sPDTHI16)9C{32393)eDFX{33+DFZ2192:+DFY¥{9)»
L ¥ 1 X999} eNY(S2929)eD7(83329% 21 X{928)s) YES9al)e
15% 2 LZ{993) s CPX{2)2LPY(3)2CPZ21{3) eWDX{323)sWDYI{323)»
__ Yex 3 MDZ(Ge9)eMWON(9e9) e MMDY{323 e D2 (09} DWKDX (929}
17= 4 DHWOY {222 )oDWWIZ(399) s HX {9 9o HY {32 sHZ{33+FEX{359)e
18 5 FEYL{Be3)eFEZ7(09) -
19= EQUIVALENCE 1APLL)sQL1Y})
20 % REAE | Xef Yol ZaMBoIXXpIY¥YelIZZ 0 IXYeIX7 TV 708 THol TYelIZ
2ilx c
—22=%x L INTTIAt CAPCULATICN OF BARYCZENTER MECTORS MHeRoaTa BODY £.5.S
23= C AND HINGE POINTS
FA ¥ c
25% NB3 = N3
26 % NCY = NC =+ 1
27 NT=N3+NC
28% ML) = 0. e . -
29=% DO 5 Jy=leNB
20= BMASSESE = MBg Y I
3= 5 TM{l) = TM{l) + MBLJ)
32x 0O 14 T eNR_
33« DO 1% J=1s:NB
KLY IFEI.E6.J0) GO T0O 16 S
35= K = 101 « J
36 =% P XETed) = L IXEKD
37= LY{Ied¥ = LIYIK)
I8= : b 28T eg) = LIZEK)
39« GO T0 1%
0= i6 E €T ey = 0.
4i= LY¥Y{I+J) = B,
42 § 26T e} = Qo -
43x% iy CONTINUE
4= Ng 13 s=1eNB
45« DO 13 U=1leNB
46 % DX{NeJeN) = LA{NeJg)
47 DY{NsJeN) = LYINeJ)
48=% DZENeJeN) = LZE{NeJd)
4 9% DO L3 K=leNB
S0 DX{NedeN) = DXCNedeN) -~ (BMASSIKI/ZIMEL) Xnl XEN2K)
51+% DY{NsJeN)} = DY{NsJeN) - {BMASS{KIZTMAL) I=LY{NsK)
§52=% 13 DZi{nedeN} = DZENeJesN)} - (BMASSIKE/TMEL Y=l Z{NeK}
53% c
S4= c CALCULATION OF AUGMENTED INERTIA DYADICS FOR _EACH BODY
55% c
5= PO 331 N=olaeNB
57« CllsleN) = IXUXAN)
58 C{le2eN} Z-IXY(N}
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59% Cile3oN) =~-IXZIN)

60% C{2s2eN) = TYY(N}

bix Ci2s3eN) ==1IYZ{N}

B2 CE83e3eN)} = TZZ¢N3 e — -
63% DO 30 J=is-NB8

Bbx% ClloleN} = ClloeleNI +BMASSEJE*(DY(NeJoN)#x2 + DZi{NvJeNiuzsl}
55% Cils2+8) = C{le2sN} —-BMASS{JI DX INsJs NI DY {NoJo N}

6= C{le3eN) = C{Lls3eN) -BMASS{UI=DXINoJoN)I2DZINsJeN})

57% Cf2229sN) = C£{2s29N) +BMASS{JI*{DXINaJeNI®%2 & DZA{NedoNI=223
8= C(2s3eN)y = C(2e¢e3aN) ~BMASSEJI2DYINeJeN)=DZINesJdsN)

. B3x 30  C{3s3sN) = C{3s3sN)} +BMASSI{UI#IDX INeJeMI%%*2 ¢ DY{NsoJo MIbn2} _

70=% CiZ2sleN) = CClelel)

1= C{32)eN) = Cils3sN) - e
T2#% 31 C(3e2eN)} = C{2¢3eN)

73=% C — e

Thx c (AY MATRIX CONSTANT ELEMENTS

75 c —

7% DO 32 N=-leNB

T7%. DO_32 Tz1:3 e e e e —onrote e et bt e s et

78= DO 32 Jzie3

79=% K = Jx{N-13) « 1 - -

80= L = 3={N-L) + J

81 =% 32 A{Kel ) = LiTs,daN} — e S

82= DO 15 N=1leNB

B3ix X3 = 3=N e ot it

84 K2 = K3 - 1

85% Kl = K3 - 2 —

86 % GEKLeKIY = AEKIeKI)

B37x Q{KleK2) = A{XleK2) _ R -
88= GEK1eK3) = A{KLeK2)

8 9% Q{2 K1) = Ai{XZ2sK1) . - — - - .
S0 = Qi{K2ZeK2)Y = A{KZsK2)

& Q{2 K3) = A{KZ9sK3)

92% CEK3sKI} = ALK3sKL}

o B3x QI K3eK2) = A{K3IeKZ2)}

94 = 15 G{KIsKI} = ALK IeK3)

S3% c

3b* c INVERSE BQDY~-TO-BODY CO-ORDINATE TRANSFORMATIGON MATRICES
7% c

98 = DO 50 IZ-LisNB

99 DO 80 J=1eNB

100= IF{J.GE.I)} GO TO 5O
101 DN 49 ¥KX=1a:23%

102= DO 43 t-i+3
103= 49 T{TsdsKel ) = Tl{JdoelsieK) . —

104 50 CONTINUE
105= o
106 o BODY-T0-B00Y COCRDINATE TRANSFORMATIONS OF BARYCENTER-
107 % G -T0-HINGE VECTORS

i08= c
109= DO 17 I=leNB . _

110# B0 17 U=isNB
1il= DO 17 ¥=1a:NB I

112=* IF{I.EQ.J} GO TO 17
113% IF{1.£0.X) G0 Y0 17

114 DX{TodeKIZTEYoKelol}a0X(IodoldoT{loKelo 2 sDY¥{Iedel}

1i5% 14 AT IR EIEDVESENIDG . )

116% DY(Tede )T ETeK e2¢ LI 2DX €T o delb+TlleKoeldel2}nsDY¥{Iodely

LE7= ) S 2T Te® e20322D7 8T 0 del¥
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118=% D24 TousRI=T{IoUo 3ol xDU{IsJde I} +T{IoKe322)sDYLIsds I}
1i9= i ¢ T8 e oe3e322D7¢Tw.dnl)
120= 17 CONTINUE
121x% [ e e
122x% C (A} MATRIX TIME VARYING ELEMENT COMPUTATION (TRANSFORMED TO
123= c PROVIDE PROPER BODY-N COORDINATES WHEN MULTIPLIED
124= c BY ANGULAR VELOCITY VECTIORS OF BODIES-K
125% C IN K COORDINATES--N NOT EQUAL TO K}
o Lee= O S
127= DO 210 N=lsNB
128= 0O 210 1 =1eNB
129= IF{N-GEsL) GO T0 210
130= K = 3x{N-1}) ——
131 LE = 3={t-1}
132» APiK+ ot L+13 = -TM(L)» (DY 4L oNoNIZDY(NoL oN} + DZ2(t eNoNI+*D2{Nebl eNJ}
133 AP{KeloLL #2) = TM{L1)=DX{LsNoNI=DY{NsL2N)
P34 API{K+kel t +3) = ITMEL =DX L eNoNI#DZiNot o N}
135% AP{K#+2sLL#*1) = TM{L)*DY{LseNeNI=DX{NsLsN]
136x% API{K*#2s L +2) = ~TM(L)# (DXL oNsNI*DX(NstL eN} + DZ2tLeNeN}I2DZ(NosLoN}}
137= AP{Ke2¢LL +3) = TH{L)*DY{LeNoNI*DZ{NoLsN?}
138% AP{K+3olf +1) = TM{L)*DZ{L oNeNI*DX(Nol eN}
139= AP{K+3+LL+2) = TML1)=DZ{LeNoNI®DY{N2LoN}
140=* AP(K+3+) 8L +3) = ~IMLL1Y»(OX4EL oNeNI*DX INeLoeN) + DY(iL oNoNI»DYENoL oN}}
141= Do 21 I=1s3
iuzs DO 2t J=1s3
143= KK = K + 1
144 NN = LE + J R
145% ALKKoNN) = APIXKeLL+1)=T{LoNsloJd) + APIKKoLL*23=T({LeN22sJ)
146= +AP(KK oL +3)%T L oNe 35,0}
147 = A{NN2KXKK) = A{XKsNN?
148 21 CONTINUE -
149% 210 CONT INUE
150% c
151=% c -A- MATRIX CONTRIBUTIONS FROM THE CONSTRAINT MATRIXeP
152 € :
153= DO- 101 IzZ1enN3
154 Do 101 Jc-lieNC e _
155=% JC = 4 + N3
156% A¢T+JC) = PlIedJ) e
157= 101 A{JCs 1) = A{I.30)
158= c .
1539=% C INVERT -A- MATRIX
160= [ -
161 CALL AINVOLA«43sNT+512sHRK)
162= RETURN
163=% ENTRY MLTRATINBINIsNCoTX o TYeTZ2eFXoFYeFZoPlelWloW2oW3eE?
164 = DIMENSION FXE13eFYELlYeFZ( o TR 3)eTY(L)e T2 ey 2 ¢Elawddlls
165% PDIN3sNC)
166=% DIMENSION WX{9+8)eWY(S+s3)sHZ(%=S)eEtU3s1l}
167% C
168« C EXTERNAL FORCES
169= C
170=% DO 33 J=leNB
171i= WX{Jded) = HWL1{U)
172=* WY{Jsd) = WZ2{J)
173« WZ{JdedJd} = HW344)
174 FEXdJdeJ) = FU(J)
175=% FEY{JsJ) = FYL{J}
176=% 33 FEZEJsJd) = FZLJ) R B -
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177= C
178% o BODY~-TC~-BODY COORDINATE TRANSFORMAYIONS OF ANGULAR
178=% C VELOCITY VECTORS
180=% o BODY~-T0-80DY COORDIMATE TRANSFORMATIONS OF
181= c . EXTERMAL FORCE VECTORS.
182= c
(83= DO 25 I=1«NB I .
184 % DO 25 Jz1leNB
. x85=x IF{Il.EQ..J)} GO TO0 _25. . e e e ereema o
i86x% HX(IaJ)—T(Iszl?l)*WX(IDI)+T(IQJ loZl*HY(IGI)*T(I!JGIS3)*“2(1713
187=# WYEIod)sTeTods2el)elX 8ol eT(To 2o neY lel)+T¢Tede2e3)nwZilel}
188=% WZLIodd=T Isde3o )W ToI)eT{IoJe302) MY {Lel)sT{IoJdo3e3)xUWZ2{Is1I)
——_,89% FEX{Tod)l = TUIodolsl¥axFEXETel)+T€Todelel2)xFEY (Tl +T¢lodeloaleFEZE
190= 1I:1)
191=% FEYETeudl 2 F0Xode2e AEsFEXET 0 ) 2T n oo fdaFEYET o)+ T8 o dede3)eFEZL
192% 11,1
. 193s =0 FEZiTed) = Tl{TeJe3ellaFPiXfTel)+TiTloJe3e2)sFEYCTI oI +T(Todo3e3psFEZ(
1904 111D
195= 25 CONTINUE I
1396= c
___Lﬂli__uﬂ____mlﬁ*jﬂﬂmﬁﬂDSSHRRﬂﬂuﬁIS_QESQRIBl&ﬁmﬁlﬁliﬂ_ﬁﬂlAllﬂNAL COUPLINGS
198% c {QUADRATIC TERMS INVOLVING THE CONNECLTINS BODY ANGULAR
_1%%=s -~ C = VELOCITIES AND THE MUTUAL BARYCENTER-HINGE VECTORSY)
~200=* c
_ 201 000 DO 23 NZEeNB
202+ CPX(N) = O.
. 203» CPYENY = Da "
204 = CPZ{N) = 0.
205=% N0 23 1 =1eNB
206% IFIN.EQ.L)Y GO TO 23
20%= WDXCEL eNY = MYCE eNI2DZ4L oNMeNY - WZEE eNI*DYEE eNoNY
203*_ WOY{LeN) = WZ{LsN)=DX{LoNeN}) = WX{LoN)=DZ{LsNeN}
209 MOZEE ey = WXCL oNYI2DY ¢ eMeN) = WYL eNYxDXEl eNeN)
210« WWOX{LaN) = TMLL)={WY{Lo NI *WOZAL+N) - WZ{LeNI*WDY{LeN}} ¢ FEX{L2sN)
2ilx% WWODYEL e} = TMERIH(UZ (L eNI2WOXEEoNY ~ HXELoN¥2WDZEL eN¥E + FEYEE oNY
212= WWDZ{LeN) = TM([’*(ﬂX(L!N)*HDY{LSN) - WY{LeN)#WDX{LsN)} + FEZ{LsN)
213x DWWDXEE o N} = ODOYUiNel eNI#WWDZEL oNY ~ DZiNel e N *NWDYEE eN)
214+« DWWDYL{LeN) = DZ{NsL oN)*WWDX{LeN) ~ DX{NsLoNI*WWDZ{LeN)
2i5= DWWDZ(L oMY = DXENoL eNYxMWOYEL siN) — DYENebL oNIsWWDXEE o N
2i6+* CPX{N) = vPX(N, + DWEOX{LeN}
217=* CPYIN) = CPY(N)} + DUMDY (L eN}
218=% CPZIN) = CPZIN) + DWUDZIL2N}
219 23 CONTINUE
220 % DO 27 N=1lenNB
221i=% DEXENG DY({NeNsNI*FEZ{NeN)Y ~ DZ2{NeNeNI=FEYENeN)

222= DFY(N) = DZ{NoeNsN)XFEX{NeN) ~ DX{NesNosNIsFEZ{NsN)

223% 27 . DFZIN) DX{NsNeNI*FEY{NeN) ~ DY{NeNsNI=2FEXi{NeN}
224= <
225% c ANGULAR MOMENTUM VECTOR CCOMPONENTS FOR 80DY N
226% c
2217% DO 22 N=1e«NB
228= K3 = 3sN
229% K2 = K3-1
230= Kl = K3-2
23ix HXENY = QEKIeK I xRXINeN)I+GEK e K2 *RY (N NI+ QEX K33 xWZENeN}
232= HY{N} = Q(KZaKi)*HX(NfN)*QlKZaK2!¢W¥iNsN!*G(KZaKS)*HZiNeN)
233x% 22 HZENY = QEK3eK 1I2WXINoNI+G (Ko K2I*HY INNI2QIKIeKIT2MZINsN)
234= c
__ 235 € @ {F) VECTOR ELEMENT CAL CULATION
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23bx C

237= DO 2% N=1.,NB

238=% K = 3x{nN-L1}

239% E{Kels1) = HY{N)2WZ{NoN) - HZINI=WY{NeN} <« THI{M?

_ . 240=s o .y % CPX{N} =+ DFX{N} o

241 = E{Ke2+s1) = HZI{N)2WX{NeN) - HX{N}*HWZ{NsMN} <+ TYL{N?
2U2% i + CPYINY + OFYINY

2843 2u Ed4Ke3s1) = HXAN)=WY{NoN} -~ HY{NI=WX{NeM) <« TZ4N)
24l 1 ¢+ CPZI(NY + DFZENY

2R 5% DO 403 JTienNC

2462 POTHLYY = 0o N

287= DO 403 I=-1sNB

248= PROTWCJY = PDTWEJY ¢ PRE3*T -2 dh2bXETel)

249 PDTHLUY = PDTHIJ) + PDU{3aI-1sJd)xUV{Ie 1)

250 403 POTHEY) = PDTWEJY & PDE3*Te 2K (1]} B
251=% DO 42 N=z1seNC

252=% JE = N3 + N

253% 42 E{Jlsl) = —-PDTUIN]

254 % IC = N3 + NG

255% Do 520 I=1.1IC

256% B{Ist) = 0, e —
*DIAGNOSTICs THE TEST FOR EQUALITY BETWEEN NON-INTEGERS HMAY NOT BE MEANINGFUL.
257 =% IF¢FKCITl-NEL.) GO TO 5208 .

258=% Do 52 J=1.1IC

259= BeTlel}l = Be(Tel) + ACTIodd=F (Jdel)

260 % 52 CONTINUE

261« 520 CONTINUE —

262 DD 53 I=1ls1IC

263= 53 E{TIel) = BEIol)

254 = 12 CONTINUE

265= RETURMN

266% END

64

END OF COMPILATION:

! DIAGNOSTICS.
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D

TURRCUTINE MLTBD(NBeNZeNCeMBeP el s IXKoIVVs 1222 XY e RZelVZelLIXeLIYs

2% 1 LIZsFKC)
3% C
) C ADJUSTABLE DIMENSIONS
5% c
5% DIMENSION MB{L)eIXX(L)oIVYLL) o IZZ{1) o IXY{L)e IXZU1 )0 IVYZL{Ll)sLIX{1)s
YES 1 LIYC(L)oLIZCL)eTMELY eFKCtLIeP(N3eNCYeT{NBeNBe3e3)
8 % C
g* C ADDITIONAL DIMENSIONED VARIABLES
10=* C
11+ DIMENSION AP{27027)
12=% DOUBLE PRECISION A(H343).B(U3« 1) +WRK(20D)
13% DIMENSION 3MASS(3)e C{393+9)sDFX(3)sDFZ(9)+DFY(9)s
L= 1 DX€9¢S¢8)s0Y¥(%2399)eDZ(399e3)¢bX(Se3)elY(T:29)s
15 2 LZ(3e3)eCPX{3)sCPY(S)sCPZI)
16= 3 WHOX(359) eWWOY(3e3)eWWDZ(S¢9) +DWUWDX(ZeS ]
17 4 DWWDY (99 3)9DWWDZ(9e9)e FEX{3+9)s
18= 5 FEY(3eS)eFTZ2(%:3)
13= REAL L Xel Yol ZoMBe IXXoIY¥Y9 3Z2+IXY 9 IXZoIYZs  IXsLIYeiIZ
20* c
21% c INITIAL CALCULATION OF SARYCENTER VECTORS WeR.T. BODY CaG.S
22 C AND HINGE POINTS
23% C
24 % NB83 = N3
25% NCL = NC & %
26% NT=N3+NC
27= TM(Ll) = Q.
268 DO 5 Jg=leNB
23x% BMASS(J) = MB()
30= 5 TMOL)Y = TM(L) » MB(J)}
31= DO 14 1z1eNB
3= DG 14 J-lsNB
33=% IF{l.EQe) GO TO 16
Iy K = U= + J
35% LX{Ta,0) = L IXI(K)
3I6* LYC(Ied) = LIY(K)
37= L2{Isd) = L IZ24K)
38 50 TO 14
39% 16 LX{I+J) = 8,
40« LY(Ied) = Oa
B]= L Z201sd) = Q.
4= 1] CONTINUE
43% DO 13 NZ]aNB
4oy DO 13 Jz1lsNB
b5 DX{taJoN) = L X{NsJ)
4= DY{NsJeDM) = LY(Ned}
47% DZ(NsJeN) = 1 Z(NeJ)
48 DO 13 K=L=NB
4 3% DX{NedJdsN) = DX(NsJesN) — {3MASSU(KI/TMLLII=LX(NsK)
50 DY(NedeN) = OY(NedoN) = (BMASS(KI/TMOLI)*LY(NsK}
51= 13 DZ{NsJeN) = DZiNosJeN) - (SBMASS(KI/TM{1))*LZ{NsK)
52% C
53x* C CALCULATION OF AUGMENTED INERTIA OYAQICS FQR EACH 30DY
Sh* c
55% DO 31 N=leNB
56=% Cllelol) = IXX(N)
57% C{le2sN) =-IXY(IN)
58« CCle3eN) Z=IXZ(N)
59+# Ce2s2sN) = IYYIN)

66
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60=* ClZe3sN) =-IYZ(N}

ol=% Ct3s3eN) = I2Z(N)

E2% DO 30 J=-1«NB

63x% Celsolso) = CllsloN) +BMASSINNI*{DY{NeJeN)%%2 + DZ7{NoJos NI%x2}
by x ClleZ2eN) = Clle2oN) ~BMASSEUSI=*DXINs JeN)=DY (Nedel)

65% Cf{ls3eN) = Cl{le3sN) —BMASS{JI*DX(NoJoN)*DZ{Ne JoN)

Bbx Cl2s2eN) = Clcr2sN) +BMASSEJI*{DX(NedeN)*%2 ¢+ DZ{NeJosN)}xx2}
b7x C(2s3e¢N) = C{2s3sN) ~BMASS{J)I*DY(NeoJsNI*DZ{Ns Jz N}

58 k18 C{393sN) = Ci3s3sN) +BMASS{JUI*{DX{NesJoNI%%2 ¢ DY{NvJoe N)=%2}
69x% Ce2e¢1sN) = ClleZ2eN)

70% Cl3s1l2N) = C{1ls3sN)

Tix 31 Cl3s2eN) = C(223eN)

712% C

73% C {A)Y MATRIX CONSTANT ELEMENTS

T4=% c

75% DO 32 Nz-leNB

716% DO 32 I=1e3

77=% DO 32 J=l+3

78x% K = 3x{N-1) + T

79=% L = 3x(N-1) + J

80= 32 A{Kal) = Ce{IsJdeN)

Blx o

82% C INVERSE BODY-T0-B0DY CO-ORDINATE TRANSFORMATION MATRICES
B3x c

B4 DO 50 I=l.NB

85x% DO 50 J=1leNB

86 % IF{JU-GE-1) GO 70 50

B7x% DO 838 Kz1:3

88x% DO 49 L=1s3

89x 48 TeIsdsKel)l = TlUeslel sK)

90 50 CONTINUE

9ix» c

92x% C BODY-T0-BODY COORDINATE TRANSFORMATIONS OF BARYCENTER-~-
93=% C -TO-HINGE VECTORS

L L C

95 % DO 17 I=1eNB

35 DO 17 Jz1lsNhB

97 DO 17 K=1leNB

38x IF(I.EQ.J) GO TO 17

98 % IF(I.EG.K)Y GO YO 17
100= DXU{IoJoKISTIIo Kol 1) sDX{Tods I +T{(ToKolo2)2DYL{IsJde 1)

101= 1 +T(IeKsle3)xD2¢Tedel)

102« DY{TIoJsK)ZT{ToKs 20 1) %xDX{IoJdeI)eT{19K2292)%DY{IsJs1)

1G3= 1 +TEIeK 02933 %02(Tede])}

104= DZ{TeJoKISTE{ToKo 32 1) DX {ToJoI)+T{IsKs3s2)DY{IsJ91)

105=% 1 +T(TeKo303)%DZ2(Tvdel)
i06% i7 CONTINUE

107= C

L0 8= ¢ {A) MATRIX TIME VARYING ELEMENT COMPUTATION {TRANSFORMED 70O
109= C PROVIDE PROPER BODY-N COORDINATES WHEN MULTIPLIED
110= c 3Y ANGULAR VELOCITY VECTORS OF BODIES-K

1llx C IN K COORDINATES~~-N NOT EQUAL T0O K}
112= C

113= DO 2180 Nz-leNB

114= D0 210 L=1eNB

115=% IF{N.GE.L) GO TO 210
116% K = 3%x{N-1)

117= LE = 3x(L-1}

118=% AP{K# Lol +1) = ~TMLL)*{DY{LoeNsN)=DY{NoLoN} + DZ{LoNeN)=«DZ{NsLaN})
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119=% AP{K+Llel L+ 2) TMELI#*DU{L oN>NI*DY(NeL e N}

120% AP{K+ LelLL+3) = TM{L)=DX{LeNoeN)I2DZ{NesL2N)
121=% AP{K+2sbLL+1) = TMLL}#DYLL sN+NI*DX{NeL N}
122% AP{Ke2sLL+2) = ~TM{1)=x{DX{LeNoN)#OX{NsLosN} + DZ{LeNsNI*DZ{NoLsN)}
123% AP{K+2:LL+3) = Tm{L)=DY (L sNeN)*DZUINsL2N)
124% AP{K#3sLL+1) = TM(L)*DZ(LoNsN)*=DX(NsLoN)
125=% AP{Ke 3oL +2) = TM{1)=DZ{LoNoNI=DY{(NsLeN)
126=* AP(K+3ebL +3) = =-TMELI®(DX{LoeNeN)®DXENebLeN}) + DY(LsNeN}=DY{NsbLeN}}
127 DO 21 I=1,3 B
128= PO 21 J=1+3
129=% KK = X + I
130= NN = LL + J
131= A{KKesNN) = AP{KKsLL+1d2#T(ioNolod) + AP(KKoLL+2)%T {LoeNo225sJ)
132=% 1 +AP{KKoLL+3)xT(L eN23eJ)
133= A{NNsKK) = A(XKeNhNN)
134 21 CONTINUE
135% 210 CONTINUE .
136 ¢ '
137= C ~A- MATRIX CONTRIGUTIONS FROM THE CONSTRAINT MATRIXeP
138= c
1339=% DO 101 IZ1sN3
140= DO 101 J=leNC
s l4lx JC = J + N3
Lu2=x E{IeJdC) = PlIed]}
143=% 101 A{JgCel) = AfT-C)
104 % c
145« C INVERT ~-A- MATRIX
l46= C
147 = CALL AINVD(As43+NTsS12e4HRK)
148 RETURN
149 ENTRY MLTRAT{NOeN3sNCoTXo TV oTZeFXeFYoFZoWloW2sW3sE)
150=% DIMENSION FX{LYoFYCL)eFZ (L) e TX (LY o TY (L eTZ( ) ol eW2Ce3(l}
151= DIMENSION WX{999)sWY{393)eWZ(223)eE(43s1})
152« C
153=% C EXTERNAL FORCLES
154 = C
155« DG 33 JzinB
156=% WXEJdsd) = WLLU)
157% WYiJeJ) = W2¢J)
158=x% WZ{Jded) = W3I(J)
153% FEX{JJd) = FALY)
160=» FEY{Jed) = FYULU)
161l= 33 FoZiJdesJd) = FZULJ)
162% C
163 C BoDY~-TC~-800Y COCRDINATE TRANSFORMATIONS OF ANBULAR
164 = C VELQZITY VECTORS
165% C 800Y-TO-306DY COORDINATE TRAMSFORMATIONS OF
1665 C EXTERNAL FORCE VECTORS
167= jof
168= DO 25 I=lehB
169% ] DO 25 Jz=1snB
170= IF(I.EQG.J} GO TC 25
L71= WXL IoJ)TT{To o ol ) sWX{Is I)+T{Iodol o2 #WY{IsI)+T{IsJels3)2WZ2{Is 1)
172% BY(Ied)oTeTedeZ2e L) WX {TelleT(Ioedel2eZ) WY EiIeclloTlledelde3jalZ{TIell}
173% WZ{TeJd)oT{ToJo3sl )X {IoI)+T{Iods392) 2l {lol)+T{IoJdo3e3)swZi{ls1}
L 74x% FEXCIod)l = T(Isdele IxFEX(IoIloT{loJele2)sFEYITIoId2Tiledele3saFEZL
175= 1173
L76x% FEY{Iod) = TUIoedel2ebd#FEN (I o) 2T{leodece2}FEYLIel)+T{IvdelsI sFEZSE
177% 1I,1) :
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L78=% FEZ{Ied) = T{IodoZeoldsFEN(TI I +TtIedo3ed aFEY(I2T02T4Lsded3e3)sFEZ(
179=% 11:71)
180= 25 CONTINUE
181= c
182 c VECTOR CROSS PRODUCTS DEZSCRIBING SYSTEM ROTATIONAL COUPLING.
183=% C (QUADRATIC TERMS INVOLVING THE CONNECTING BODY ANGULAR
184=% C VELOCITIES AND THE MUTUAL 3BARYCENTER-HINGE VECTORS)
185=% C
186= DO 23 NZ1sNB
187 CPX(N) = 0.
188x% CPYIN) = O
183 CPZ(N) = Q.
130+# DO 23 L=1»N8
191=% IF{N.EG.L) GO TQ 23
132= WWOX({LeN) = FEX{Ls2N)
193 WWOY{LeN) = FEY(LeN)
134 x% WWDZ{LsN) = FTZi{L9N)
195=% DWWDX(L9N) = DYU(NsLeNI*WWDZ(LeN) - DZ(NeLsNI*WWDY(LsN]
196=% DWHDY(LeN) = DZ{NsL oN)I*WWDOX{LeN) = DX{NosLsN)=WWDZ{LeN)
187=% DWWDZEL eN) = DXUINsLeN)*UWOY (L eN)Y = DY(NeLeNI*UBWOXI{L N}
1338% CPXIN) = IPX{N) + OJWKWOX{LeN)
1389= CPY(N) = CPY(N) + CWWDYLLeN)
__200= CPZI{N) = LPZ4{N) + DWWDZ{L2N)
cll= 23 CONTINUE
202« DO 27 N=-1sNB
203 DEXANY = DY(NeNeNI®FEZ(NsN) - DZIiNoNeN}*FLY{NsN)
20 4% DFY{N) = DZ{NeNsNI*FEX{NoeN) — DX(NsNoNI*FEZ{NsN)
205 21 DFZEN) = DX(NeNeNI*FEYINsN) - DY(NeNoNI*xFEX{NeN]
Z06x* C
207= C {E)Y VECTOR ELCMENT CALCULATION
208% ¢
209x DO 24% NZleNB
210% K = 3x{N-1)
2lix% EfKelel) = TX{(N} + CPXI(N) + DFX{INJ
212=* E(K+2s1) = TYL{N) + CPYI{N) + DFY{(N)
213x 24 ECK+3¢l) = TZ(NY + CPZUIN} + DFZIN)
21 4% IC = N3 & NC
215=% DO 520 I=-1leIC
216=% B{lel) = Lo,
#*DIAGNOSTIC* THE TEST FOR EQUALITY BETWEEN NON-INTEGERS MAY NOY BE MEANINGFUL.
21 7= IF{FAC{I)-NE.L1:) 50 T0 528
218= DO 52 Jz1e3IC
219% B{Isl) = 3{I21) + A({IeJ)*ELJs )
220% 52 CONTINUE
221% 520 CONTINUE
222= DO 53 Iz1:1IC
22 3% 53 E{Isl) = 3{Isl)
224 =% 12 CONTINUE
225% RETURN
226 =% END
END OF COMPILATION: 1 DIAGNOSTICS.
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